Analysis of the Putative Nucleoporin POM33 in the Filamentous Fungus <i>Sordaria macrospora</i>

In the filamentous fungus <i>Sordaria macrospora</i> (Sm), the STRIPAK complex is required for vegetative growth, fruiting-body development and hyphal fusion. The SmSTRIPAK core consists of the striatin homolog PRO11, the scaffolding subunit of phosphatase PP2A, SmPP2AA, and its catalyti...

Full description

Bibliographic Details
Main Authors: Anika Groth, Kerstin Schmitt, Oliver Valerius, Britta Herzog, Stefanie Pöggeler
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Journal of Fungi
Subjects:
Online Access:https://www.mdpi.com/2309-608X/7/9/682
Description
Summary:In the filamentous fungus <i>Sordaria macrospora</i> (Sm), the STRIPAK complex is required for vegetative growth, fruiting-body development and hyphal fusion. The SmSTRIPAK core consists of the striatin homolog PRO11, the scaffolding subunit of phosphatase PP2A, SmPP2AA, and its catalytic subunit SmPP2Ac1. Among other STRIPAK proteins, the recently identified coiled-coil protein SCI1 was demonstrated to co-localize around the nucleus. Pulldown experiments with SCI identified the transmembrane nucleoporin (TM Nup) SmPOM33 as a potential nuclear-anchor of SmSTRIPAK. Localization studies revealed that SmPOM33 partially localizes to the nuclear envelope (NE), but mainly to the endoplasmic reticulum (ER). We succeeded to generate a Δpom33 deletion mutant by homologous recombination in a new <i>S. macrospora</i> Δku80 recipient strain, which is defective in non-homologous end joining. Deletion of <i>Smpom33</i> did neither impair vegetative growth nor sexual development. In pulldown experiments of SmPOM33 followed by LC/MS analysis, ER-membrane proteins involved in ER morphology, protein translocation, glycosylation, sterol biosynthesis and Ca<sup>2+</sup>-transport were significantly enriched. Data are available via ProteomeXchange with identifier PXD026253. Although no SmSTRIPAK components were identified as putative interaction partners, it cannot be excluded that SmPOM33 is involved in temporarily anchoring the SmSTRIPAK to the NE or other sites in the cell.
ISSN:2309-608X