Complex polymorphisms in endocytosis genes suggest alpha-cyclodextrin as a treatment for breast cancer.

Most breast cancer deaths are caused by metastasis and treatment options beyond radiation and cytotoxic drugs, which have severe side effects, and hormonal treatments, which are or become ineffective for many patients, are urgently needed. This study reanalyzed existing data from three genome-wide a...

Full description

Bibliographic Details
Main Authors: Knut M Wittkowski, Christina Dadurian, Martin P Seybold, Han Sang Kim, Ayuko Hoshino, David Lyden
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2018-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC6028090?pdf=render
_version_ 1819142062400864256
author Knut M Wittkowski
Christina Dadurian
Martin P Seybold
Han Sang Kim
Ayuko Hoshino
David Lyden
author_facet Knut M Wittkowski
Christina Dadurian
Martin P Seybold
Han Sang Kim
Ayuko Hoshino
David Lyden
author_sort Knut M Wittkowski
collection DOAJ
description Most breast cancer deaths are caused by metastasis and treatment options beyond radiation and cytotoxic drugs, which have severe side effects, and hormonal treatments, which are or become ineffective for many patients, are urgently needed. This study reanalyzed existing data from three genome-wide association studies (GWAS) using a novel computational biostatistics approach (muGWAS), which had been validated in studies of 600-2000 subjects in epilepsy and autism. MuGWAS jointly analyzes several neighboring single nucleotide polymorphisms while incorporating knowledge about genetics of heritable diseases into the statistical method and about GWAS into the rules for determining adaptive genome-wide significance. Results from three independent GWAS of 1000-2000 subjects each, which were made available under the National Institute of Health's "Up For A Challenge" (U4C) project, not only confirmed cell-cycle control and receptor/AKT signaling, but, for the first time in breast cancer GWAS, also consistently identified many genes involved in endo-/exocytosis (EEC), most of which had already been observed in functional and expression studies of breast cancer. In particular, the findings include genes that translocate (ATP8A1, ATP8B1, ANO4, ABCA1) and metabolize (AGPAT3, AGPAT4, DGKQ, LPPR1) phospholipids entering the phosphatidylinositol cycle, which controls EEC. These novel findings suggest scavenging phospholipids as a novel intervention to control local spread of cancer, packaging of exosomes (which prepare distant microenvironment for organ-specific metastases), and endocytosis of β1 integrins (which are required for spread of metastatic phenotype and mesenchymal migration of tumor cells). Beta-cyclodextrins (βCD) have already been shown to be effective in in vitro and animal studies of breast cancer, but exhibits cholesterol-related ototoxicity. The smaller alpha-cyclodextrins (αCD) also scavenges phospholipids, but cannot fit cholesterol. An in-vitro study presented here confirms hydroxypropyl (HP)-αCD to be twice as effective as HPβCD against migration of human cells of both receptor negative and estrogen-receptor positive breast cancer. If the previous successful animal studies with βCDs are replicated with the safer and more effective αCDs, clinical trials of adjuvant treatment with αCDs are warranted. Ultimately, all breast cancer are expected to benefit from treatment with HPαCD, but women with triple-negative breast cancer (TNBC) will benefit most, because they have fewer treatment options and their cancer advances more aggressively.
first_indexed 2024-12-22T12:04:22Z
format Article
id doaj.art-9b5a03d2b11c463a9f5bfa7858311c06
institution Directory Open Access Journal
issn 1932-6203
language English
last_indexed 2024-12-22T12:04:22Z
publishDate 2018-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj.art-9b5a03d2b11c463a9f5bfa7858311c062022-12-21T18:26:28ZengPublic Library of Science (PLoS)PLoS ONE1932-62032018-01-01137e019901210.1371/journal.pone.0199012Complex polymorphisms in endocytosis genes suggest alpha-cyclodextrin as a treatment for breast cancer.Knut M WittkowskiChristina DadurianMartin P SeyboldHan Sang KimAyuko HoshinoDavid LydenMost breast cancer deaths are caused by metastasis and treatment options beyond radiation and cytotoxic drugs, which have severe side effects, and hormonal treatments, which are or become ineffective for many patients, are urgently needed. This study reanalyzed existing data from three genome-wide association studies (GWAS) using a novel computational biostatistics approach (muGWAS), which had been validated in studies of 600-2000 subjects in epilepsy and autism. MuGWAS jointly analyzes several neighboring single nucleotide polymorphisms while incorporating knowledge about genetics of heritable diseases into the statistical method and about GWAS into the rules for determining adaptive genome-wide significance. Results from three independent GWAS of 1000-2000 subjects each, which were made available under the National Institute of Health's "Up For A Challenge" (U4C) project, not only confirmed cell-cycle control and receptor/AKT signaling, but, for the first time in breast cancer GWAS, also consistently identified many genes involved in endo-/exocytosis (EEC), most of which had already been observed in functional and expression studies of breast cancer. In particular, the findings include genes that translocate (ATP8A1, ATP8B1, ANO4, ABCA1) and metabolize (AGPAT3, AGPAT4, DGKQ, LPPR1) phospholipids entering the phosphatidylinositol cycle, which controls EEC. These novel findings suggest scavenging phospholipids as a novel intervention to control local spread of cancer, packaging of exosomes (which prepare distant microenvironment for organ-specific metastases), and endocytosis of β1 integrins (which are required for spread of metastatic phenotype and mesenchymal migration of tumor cells). Beta-cyclodextrins (βCD) have already been shown to be effective in in vitro and animal studies of breast cancer, but exhibits cholesterol-related ototoxicity. The smaller alpha-cyclodextrins (αCD) also scavenges phospholipids, but cannot fit cholesterol. An in-vitro study presented here confirms hydroxypropyl (HP)-αCD to be twice as effective as HPβCD against migration of human cells of both receptor negative and estrogen-receptor positive breast cancer. If the previous successful animal studies with βCDs are replicated with the safer and more effective αCDs, clinical trials of adjuvant treatment with αCDs are warranted. Ultimately, all breast cancer are expected to benefit from treatment with HPαCD, but women with triple-negative breast cancer (TNBC) will benefit most, because they have fewer treatment options and their cancer advances more aggressively.http://europepmc.org/articles/PMC6028090?pdf=render
spellingShingle Knut M Wittkowski
Christina Dadurian
Martin P Seybold
Han Sang Kim
Ayuko Hoshino
David Lyden
Complex polymorphisms in endocytosis genes suggest alpha-cyclodextrin as a treatment for breast cancer.
PLoS ONE
title Complex polymorphisms in endocytosis genes suggest alpha-cyclodextrin as a treatment for breast cancer.
title_full Complex polymorphisms in endocytosis genes suggest alpha-cyclodextrin as a treatment for breast cancer.
title_fullStr Complex polymorphisms in endocytosis genes suggest alpha-cyclodextrin as a treatment for breast cancer.
title_full_unstemmed Complex polymorphisms in endocytosis genes suggest alpha-cyclodextrin as a treatment for breast cancer.
title_short Complex polymorphisms in endocytosis genes suggest alpha-cyclodextrin as a treatment for breast cancer.
title_sort complex polymorphisms in endocytosis genes suggest alpha cyclodextrin as a treatment for breast cancer
url http://europepmc.org/articles/PMC6028090?pdf=render
work_keys_str_mv AT knutmwittkowski complexpolymorphismsinendocytosisgenessuggestalphacyclodextrinasatreatmentforbreastcancer
AT christinadadurian complexpolymorphismsinendocytosisgenessuggestalphacyclodextrinasatreatmentforbreastcancer
AT martinpseybold complexpolymorphismsinendocytosisgenessuggestalphacyclodextrinasatreatmentforbreastcancer
AT hansangkim complexpolymorphismsinendocytosisgenessuggestalphacyclodextrinasatreatmentforbreastcancer
AT ayukohoshino complexpolymorphismsinendocytosisgenessuggestalphacyclodextrinasatreatmentforbreastcancer
AT davidlyden complexpolymorphismsinendocytosisgenessuggestalphacyclodextrinasatreatmentforbreastcancer