Composite Holomorphic Functions and Normal Families
We study the normality of families of holomorphic functions. We prove the following result. Let α(z), ai(z), i=1,2,…,p, be holomorphic functions and F a family of holomorphic functions in a domain D, P(z,w):=(w-a1(z))(w-a2(z))⋯(w-ap(z)), p≥2. If Pw∘f(z) and Pw∘g(z) share α(z) IM for each pair f(z...
المؤلفون الرئيسيون: | , , |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
Hindawi Limited
2011-01-01
|
سلاسل: | Abstract and Applied Analysis |
الوصول للمادة أونلاين: | http://dx.doi.org/10.1155/2011/373910 |
الملخص: | We study the normality of families of holomorphic functions. We prove the following result. Let α(z), ai(z), i=1,2,…,p, be holomorphic functions and F a family of holomorphic functions in a domain D, P(z,w):=(w-a1(z))(w-a2(z))⋯(w-ap(z)), p≥2. If Pw∘f(z) and Pw∘g(z) share α(z) IM for each pair f(z), g(z)∈F and one of the following conditions holds: (1) P(z0,z)-α(z0) has at least two distinct zeros for any z0∈D; (2) there exists z0∈D such that P(z0,z)-α(z0) has only one distinct zero and α(z) is nonconstant. Assume that β0 is the zero of P(z0,z)-α(z0) and that the multiplicities l and k of zeros of f(z)-β0 and α(z)-α(z0) at z0, respectively, satisfy k≠lp, for all f(z)∈F, then F is normal in D. In particular, the result is a kind of generalization of the famous Montel's criterion. At the same time we fill a gap in the proof of Theorem 1.1 in our original paper (Wu et al., 2010). |
---|---|
تدمد: | 1085-3375 1687-0409 |