Summary: | Fractured-vuggy reservoirs are mainly composed of three types: underground rivers, vugs, and fractured-vuggy structures. Based on the similarity criterion, a 3D model can truly reflect the characteristics of the multi-scale space of a fractured-vuggy reservoir, and it can reflect fluid flow laws in the formation. Water flooding, gas flooding, and gel foam flooding were carried out in the model sequentially. Based on gas flooding, the enhanced recovery ratio of gel foam flooding in the underground river was approximately 12%. By changing the injection rate, the average recovery ratio of nitrogen flooding was 6.84% higher than that of other injection rates at 5 mL/min, and that of gel foam flooding was 1.88% higher than that of other injection rates at 5 mL/min. The experimental results showed that the gel foam induced four oil displacement mechanisms, which selectively plugged high-permeability channels, controlled the mobility ratio, reduced oil-water interfacial tension, and changed the wettability of rock surfaces. With different injection-production methods, gel foam flooding can spread across two underground river channels. Two cases of nitrogen flooding affected one underground river channel and two underground river channels. By adjusting the injection rate, it was found that after nitrogen flooding, there were mainly four types of residual oil, and gel foam flooding mainly yielded three types of remaining oil. This study verified the influencing factors of extracting residual oil from an underground river and provides theoretical support for the subsequent application of gel foam flooding in underground rivers.
|