Seeley-DeWitt coefficients in N $$ \mathcal{N} $$ = 2 Einstein-Maxwell supergravity theory and logarithmic corrections to N $$ \mathcal{N} $$ = 2 extremal black hole entropy
Abstract We investigate the heat kernel method for one-loop effective action following the Seeley-DeWitt expansion technique of heat kernel with Seeley-DeWitt coefficients. We also review a general approach of computing the Seeley-DeWitt coefficients in terms of background or geometric invariants. W...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2019-08-01
|
Series: | Journal of High Energy Physics |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1007/JHEP08(2019)056 |
_version_ | 1818243825208918016 |
---|---|
author | Sudip Karan Gourav Banerjee Binata Panda |
author_facet | Sudip Karan Gourav Banerjee Binata Panda |
author_sort | Sudip Karan |
collection | DOAJ |
description | Abstract We investigate the heat kernel method for one-loop effective action following the Seeley-DeWitt expansion technique of heat kernel with Seeley-DeWitt coefficients. We also review a general approach of computing the Seeley-DeWitt coefficients in terms of background or geometric invariants. We, then consider the Einstein-Maxwell theory em-bedded in minimal N $$ \mathcal{N} $$ = 2 supergravity in four dimensions and compute the first three Seeley-DeWitt coefficients of the kinetic operator of the bosonic and the fermionic fields in an arbitrary background field configuration. We find the applications of these results in the computation of logarithmic corrections to Bekenstein-Hawking entropy of the extremal Kerr-Newman, Kerr and Reissner-Nordström black holes in minimal N $$ \mathcal{N} $$ = 2 Einstein-Maxwell supergravity theory following the quantum entropy function formalism. |
first_indexed | 2024-12-12T14:07:17Z |
format | Article |
id | doaj.art-9ba26b1411424283b6ed42431e2e313e |
institution | Directory Open Access Journal |
issn | 1029-8479 |
language | English |
last_indexed | 2024-12-12T14:07:17Z |
publishDate | 2019-08-01 |
publisher | SpringerOpen |
record_format | Article |
series | Journal of High Energy Physics |
spelling | doaj.art-9ba26b1411424283b6ed42431e2e313e2022-12-22T00:22:10ZengSpringerOpenJournal of High Energy Physics1029-84792019-08-012019813410.1007/JHEP08(2019)056Seeley-DeWitt coefficients in N $$ \mathcal{N} $$ = 2 Einstein-Maxwell supergravity theory and logarithmic corrections to N $$ \mathcal{N} $$ = 2 extremal black hole entropySudip Karan0Gourav Banerjee1Binata Panda2Department of Physics, Indian Institute of Technology (Indian School of Mines)Department of Physics, Indian Institute of Technology (Indian School of Mines)Department of Physics, Indian Institute of Technology (Indian School of Mines)Abstract We investigate the heat kernel method for one-loop effective action following the Seeley-DeWitt expansion technique of heat kernel with Seeley-DeWitt coefficients. We also review a general approach of computing the Seeley-DeWitt coefficients in terms of background or geometric invariants. We, then consider the Einstein-Maxwell theory em-bedded in minimal N $$ \mathcal{N} $$ = 2 supergravity in four dimensions and compute the first three Seeley-DeWitt coefficients of the kinetic operator of the bosonic and the fermionic fields in an arbitrary background field configuration. We find the applications of these results in the computation of logarithmic corrections to Bekenstein-Hawking entropy of the extremal Kerr-Newman, Kerr and Reissner-Nordström black holes in minimal N $$ \mathcal{N} $$ = 2 Einstein-Maxwell supergravity theory following the quantum entropy function formalism.http://link.springer.com/article/10.1007/JHEP08(2019)056Black HolesBlack Holes in String TheoryExtended Supersymmetry |
spellingShingle | Sudip Karan Gourav Banerjee Binata Panda Seeley-DeWitt coefficients in N $$ \mathcal{N} $$ = 2 Einstein-Maxwell supergravity theory and logarithmic corrections to N $$ \mathcal{N} $$ = 2 extremal black hole entropy Journal of High Energy Physics Black Holes Black Holes in String Theory Extended Supersymmetry |
title | Seeley-DeWitt coefficients in N $$ \mathcal{N} $$ = 2 Einstein-Maxwell supergravity theory and logarithmic corrections to N $$ \mathcal{N} $$ = 2 extremal black hole entropy |
title_full | Seeley-DeWitt coefficients in N $$ \mathcal{N} $$ = 2 Einstein-Maxwell supergravity theory and logarithmic corrections to N $$ \mathcal{N} $$ = 2 extremal black hole entropy |
title_fullStr | Seeley-DeWitt coefficients in N $$ \mathcal{N} $$ = 2 Einstein-Maxwell supergravity theory and logarithmic corrections to N $$ \mathcal{N} $$ = 2 extremal black hole entropy |
title_full_unstemmed | Seeley-DeWitt coefficients in N $$ \mathcal{N} $$ = 2 Einstein-Maxwell supergravity theory and logarithmic corrections to N $$ \mathcal{N} $$ = 2 extremal black hole entropy |
title_short | Seeley-DeWitt coefficients in N $$ \mathcal{N} $$ = 2 Einstein-Maxwell supergravity theory and logarithmic corrections to N $$ \mathcal{N} $$ = 2 extremal black hole entropy |
title_sort | seeley dewitt coefficients in n mathcal n 2 einstein maxwell supergravity theory and logarithmic corrections to n mathcal n 2 extremal black hole entropy |
topic | Black Holes Black Holes in String Theory Extended Supersymmetry |
url | http://link.springer.com/article/10.1007/JHEP08(2019)056 |
work_keys_str_mv | AT sudipkaran seeleydewittcoefficientsinnmathcaln2einsteinmaxwellsupergravitytheoryandlogarithmiccorrectionstonmathcaln2extremalblackholeentropy AT gouravbanerjee seeleydewittcoefficientsinnmathcaln2einsteinmaxwellsupergravitytheoryandlogarithmiccorrectionstonmathcaln2extremalblackholeentropy AT binatapanda seeleydewittcoefficientsinnmathcaln2einsteinmaxwellsupergravitytheoryandlogarithmiccorrectionstonmathcaln2extremalblackholeentropy |