Experimental Study of Flow Kinematics and Impacting Pressures on a Suspended Horizontal Plate by Extreme Waves

The flow kinematics and impacting pressures on a suspended horizontal plate under extreme waves were investigated experimentally. Three different stages of extreme waves, unbreaking, incipient breaking, and broken, were separately generated using a dispersive focusing method. The flow field kinemati...

Full description

Bibliographic Details
Main Authors: Weizhen Kong, Jun Yang, Xuyang Niu, Liangjun Wen, Haitao Li, Yuxiang Ma, Shuai Chen
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/15/15/2771
Description
Summary:The flow kinematics and impacting pressures on a suspended horizontal plate under extreme waves were investigated experimentally. Three different stages of extreme waves, unbreaking, incipient breaking, and broken, were separately generated using a dispersive focusing method. The flow field kinematics around the plate during the slamming process was measured using a combination of particle image velocimetry and bubble image velocimetry techniques. We found that for aerated areas, there are significant differences in flow patterns under different conditions. The velocity distribution in aeration areas is more discrete. The slamming peak on the upper surface is influenced greatly by the aeration effect, resulting in the maximum slamming peak of the unbreaking case being 3.8 kPa, which is 0.41 times larger than that of the incipient-breaking case and 1.12 times larger than that of the broken case. However, for the area below the plate, the slamming force and flow evolution under different types of breaking exhibit similarity.
ISSN:2073-4441