Evaluation of Integrating SWAT Model into a Multi-Criteria Decision Analysis towards Reliable Rainwater Harvesting Systems
Rainwater harvesting (RWH) has been recognized as one of the most reliable and efficient methods for water supply, especially in arid and semi-arid regions (ASARs) facing freshwater scarcity. Nevertheless, due to the inherent uncertainty of input data and subjectivity involved in the selection of in...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-07-01
|
Series: | Water |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4441/13/14/1935 |
_version_ | 1797525930363584512 |
---|---|
author | Shahab Doulabian Erfan Ghasemi Tousi Reza Aghlmand Babak Alizadeh Alireza Ghaderi Bafti Ali Abbasi |
author_facet | Shahab Doulabian Erfan Ghasemi Tousi Reza Aghlmand Babak Alizadeh Alireza Ghaderi Bafti Ali Abbasi |
author_sort | Shahab Doulabian |
collection | DOAJ |
description | Rainwater harvesting (RWH) has been recognized as one of the most reliable and efficient methods for water supply, especially in arid and semi-arid regions (ASARs) facing freshwater scarcity. Nevertheless, due to the inherent uncertainty of input data and subjectivity involved in the selection of influential parameters, the identification of RWH potential areas is a challenging procedure. In this study, two approaches for locating potential RWH sites were implemented. In the first approach, a frequently-used method of the multi-criteria decision analysis and geographic information system (MCDA-GIS) was utilized, while, in the second approach, a novel strategy of integrating the soil and water assessment tool (SWAT) model as a hydrology model into an MCDA-GIS method was proposed to evaluate its performance in locating potential RWH sites. The Mashhad Plain Basin (MPB) was selected as a case study area. The developed potential RWH maps of the two approaches indicated similar patterns for potential RWH areas; in addition, the correlation coefficient (CC) between the two obtained maps were relatively high (i.e., CC = 0.914) revealing that integration of SWAT as a comprehensive hydrologic model does not necessarily result in very different outputs from the conventional method of MCDA-GIS for RWH evaluation. The overlap of developed maps of the two approaches indicated that 3394 km<sup>2</sup> of the study area, mainly located in the northern parts, was identified as high-potential RWH areas. The performed sensitivity analysis indicated that rainfall and slope criteria, with weights of 0.329 and 0.243, respectively, had the greatest sensitivity on the model in the first approach while in the second approach, the criterion of runoff coefficient (with weights of 0.358) had the highest impact. Based on results from the identification of the potential locations for conventional RWH techniques, pond and pan techniques are the most proper options, covering high-potential areas of RWH more effectively than other techniques over MPB. |
first_indexed | 2024-03-10T09:20:00Z |
format | Article |
id | doaj.art-9bba660fe88d421ca480f0378139f448 |
institution | Directory Open Access Journal |
issn | 2073-4441 |
language | English |
last_indexed | 2024-03-10T09:20:00Z |
publishDate | 2021-07-01 |
publisher | MDPI AG |
record_format | Article |
series | Water |
spelling | doaj.art-9bba660fe88d421ca480f0378139f4482023-11-22T05:16:38ZengMDPI AGWater2073-44412021-07-011314193510.3390/w13141935Evaluation of Integrating SWAT Model into a Multi-Criteria Decision Analysis towards Reliable Rainwater Harvesting SystemsShahab Doulabian0Erfan Ghasemi Tousi1Reza Aghlmand2Babak Alizadeh3Alireza Ghaderi Bafti4Ali Abbasi5Department of Civil Engineering, Shahrood University of Technology, Shahrood, Semnan 3619995161, IranDepartment of Civil & Architectural Engineering and Mechanics, The University of Arizona, Tucson, AZ 85721, USADepartment of Civil Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, IranDepartment of Civil Engineering, The University of Texas at Arlington, Arlington, TX 76019, USADepartment of Civil Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, IranDepartment of Civil Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, IranRainwater harvesting (RWH) has been recognized as one of the most reliable and efficient methods for water supply, especially in arid and semi-arid regions (ASARs) facing freshwater scarcity. Nevertheless, due to the inherent uncertainty of input data and subjectivity involved in the selection of influential parameters, the identification of RWH potential areas is a challenging procedure. In this study, two approaches for locating potential RWH sites were implemented. In the first approach, a frequently-used method of the multi-criteria decision analysis and geographic information system (MCDA-GIS) was utilized, while, in the second approach, a novel strategy of integrating the soil and water assessment tool (SWAT) model as a hydrology model into an MCDA-GIS method was proposed to evaluate its performance in locating potential RWH sites. The Mashhad Plain Basin (MPB) was selected as a case study area. The developed potential RWH maps of the two approaches indicated similar patterns for potential RWH areas; in addition, the correlation coefficient (CC) between the two obtained maps were relatively high (i.e., CC = 0.914) revealing that integration of SWAT as a comprehensive hydrologic model does not necessarily result in very different outputs from the conventional method of MCDA-GIS for RWH evaluation. The overlap of developed maps of the two approaches indicated that 3394 km<sup>2</sup> of the study area, mainly located in the northern parts, was identified as high-potential RWH areas. The performed sensitivity analysis indicated that rainfall and slope criteria, with weights of 0.329 and 0.243, respectively, had the greatest sensitivity on the model in the first approach while in the second approach, the criterion of runoff coefficient (with weights of 0.358) had the highest impact. Based on results from the identification of the potential locations for conventional RWH techniques, pond and pan techniques are the most proper options, covering high-potential areas of RWH more effectively than other techniques over MPB.https://www.mdpi.com/2073-4441/13/14/1935rainwater harvestingmulti-criteria decision analysisgeospatial techniquesSWAT modelarid and semi-arid regions |
spellingShingle | Shahab Doulabian Erfan Ghasemi Tousi Reza Aghlmand Babak Alizadeh Alireza Ghaderi Bafti Ali Abbasi Evaluation of Integrating SWAT Model into a Multi-Criteria Decision Analysis towards Reliable Rainwater Harvesting Systems Water rainwater harvesting multi-criteria decision analysis geospatial techniques SWAT model arid and semi-arid regions |
title | Evaluation of Integrating SWAT Model into a Multi-Criteria Decision Analysis towards Reliable Rainwater Harvesting Systems |
title_full | Evaluation of Integrating SWAT Model into a Multi-Criteria Decision Analysis towards Reliable Rainwater Harvesting Systems |
title_fullStr | Evaluation of Integrating SWAT Model into a Multi-Criteria Decision Analysis towards Reliable Rainwater Harvesting Systems |
title_full_unstemmed | Evaluation of Integrating SWAT Model into a Multi-Criteria Decision Analysis towards Reliable Rainwater Harvesting Systems |
title_short | Evaluation of Integrating SWAT Model into a Multi-Criteria Decision Analysis towards Reliable Rainwater Harvesting Systems |
title_sort | evaluation of integrating swat model into a multi criteria decision analysis towards reliable rainwater harvesting systems |
topic | rainwater harvesting multi-criteria decision analysis geospatial techniques SWAT model arid and semi-arid regions |
url | https://www.mdpi.com/2073-4441/13/14/1935 |
work_keys_str_mv | AT shahabdoulabian evaluationofintegratingswatmodelintoamulticriteriadecisionanalysistowardsreliablerainwaterharvestingsystems AT erfanghasemitousi evaluationofintegratingswatmodelintoamulticriteriadecisionanalysistowardsreliablerainwaterharvestingsystems AT rezaaghlmand evaluationofintegratingswatmodelintoamulticriteriadecisionanalysistowardsreliablerainwaterharvestingsystems AT babakalizadeh evaluationofintegratingswatmodelintoamulticriteriadecisionanalysistowardsreliablerainwaterharvestingsystems AT alirezaghaderibafti evaluationofintegratingswatmodelintoamulticriteriadecisionanalysistowardsreliablerainwaterharvestingsystems AT aliabbasi evaluationofintegratingswatmodelintoamulticriteriadecisionanalysistowardsreliablerainwaterharvestingsystems |