Short Communication: Optimally Solving the Unit-Demand Envy-Free Pricing Problem with Metric Substitutability in Cubic Time

In general, the unit-demand envy-free pricing problem has proven to be APX-hard, but some special cases can be optimally solved in polynomial time. When substitution costs that form a metric space are included, the problem can be solved in <inline-formula><math xmlns="http://www.w3.org...

Full description

Bibliographic Details
Main Authors: Marcos M. Salvatierra, Mario Salvatierra, Juan G. Colonna
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Algorithms
Subjects:
Online Access:https://www.mdpi.com/1999-4893/14/10/279
_version_ 1827680413594681344
author Marcos M. Salvatierra
Mario Salvatierra
Juan G. Colonna
author_facet Marcos M. Salvatierra
Mario Salvatierra
Juan G. Colonna
author_sort Marcos M. Salvatierra
collection DOAJ
description In general, the unit-demand envy-free pricing problem has proven to be APX-hard, but some special cases can be optimally solved in polynomial time. When substitution costs that form a metric space are included, the problem can be solved in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo stretchy="false">(</mo><msup><mi>n</mi><mn>4</mn></msup><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> time, and when the number of consumers is equal to the number of items—all with a single copy so that each consumer buys an item—a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo stretchy="false">(</mo><msup><mi>n</mi><mn>3</mn></msup><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> time method is presented to solve it. This work shows that the first case has similarities with the second, and, by exploiting the structural properties of the costs set, it presents a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo stretchy="false">(</mo><msup><mi>n</mi><mn>2</mn></msup><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> time algorithm for solving it when a competitive equilibrium is considered or a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo stretchy="false">(</mo><msup><mi>n</mi><mn>3</mn></msup><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> time algorithm for more general scenarios. The methods are based on a dynamic programming strategy, which simplifies the calculations of the shortest paths in a network; this simplification is usually adopted in the second case. The theoretical results obtained provide efficiency in the search for optimal solutions to specific revenue management problems.
first_indexed 2024-03-10T06:47:29Z
format Article
id doaj.art-9bbbc9d9157540d98706ff8f719c7d18
institution Directory Open Access Journal
issn 1999-4893
language English
last_indexed 2024-03-10T06:47:29Z
publishDate 2021-09-01
publisher MDPI AG
record_format Article
series Algorithms
spelling doaj.art-9bbbc9d9157540d98706ff8f719c7d182023-11-22T17:08:13ZengMDPI AGAlgorithms1999-48932021-09-01141027910.3390/a14100279Short Communication: Optimally Solving the Unit-Demand Envy-Free Pricing Problem with Metric Substitutability in Cubic TimeMarcos M. Salvatierra0Mario Salvatierra1Juan G. Colonna2Institute of Computing, Federal University of Amazonas, Manaus 69067-005, BrazilInstitute of Computing, Federal University of Amazonas, Manaus 69067-005, BrazilInstitute of Computing, Federal University of Amazonas, Manaus 69067-005, BrazilIn general, the unit-demand envy-free pricing problem has proven to be APX-hard, but some special cases can be optimally solved in polynomial time. When substitution costs that form a metric space are included, the problem can be solved in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo stretchy="false">(</mo><msup><mi>n</mi><mn>4</mn></msup><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> time, and when the number of consumers is equal to the number of items—all with a single copy so that each consumer buys an item—a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo stretchy="false">(</mo><msup><mi>n</mi><mn>3</mn></msup><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> time method is presented to solve it. This work shows that the first case has similarities with the second, and, by exploiting the structural properties of the costs set, it presents a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo stretchy="false">(</mo><msup><mi>n</mi><mn>2</mn></msup><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> time algorithm for solving it when a competitive equilibrium is considered or a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo stretchy="false">(</mo><msup><mi>n</mi><mn>3</mn></msup><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> time algorithm for more general scenarios. The methods are based on a dynamic programming strategy, which simplifies the calculations of the shortest paths in a network; this simplification is usually adopted in the second case. The theoretical results obtained provide efficiency in the search for optimal solutions to specific revenue management problems.https://www.mdpi.com/1999-4893/14/10/279combinatorial optimizationenvy-free pricingmetric space
spellingShingle Marcos M. Salvatierra
Mario Salvatierra
Juan G. Colonna
Short Communication: Optimally Solving the Unit-Demand Envy-Free Pricing Problem with Metric Substitutability in Cubic Time
Algorithms
combinatorial optimization
envy-free pricing
metric space
title Short Communication: Optimally Solving the Unit-Demand Envy-Free Pricing Problem with Metric Substitutability in Cubic Time
title_full Short Communication: Optimally Solving the Unit-Demand Envy-Free Pricing Problem with Metric Substitutability in Cubic Time
title_fullStr Short Communication: Optimally Solving the Unit-Demand Envy-Free Pricing Problem with Metric Substitutability in Cubic Time
title_full_unstemmed Short Communication: Optimally Solving the Unit-Demand Envy-Free Pricing Problem with Metric Substitutability in Cubic Time
title_short Short Communication: Optimally Solving the Unit-Demand Envy-Free Pricing Problem with Metric Substitutability in Cubic Time
title_sort short communication optimally solving the unit demand envy free pricing problem with metric substitutability in cubic time
topic combinatorial optimization
envy-free pricing
metric space
url https://www.mdpi.com/1999-4893/14/10/279
work_keys_str_mv AT marcosmsalvatierra shortcommunicationoptimallysolvingtheunitdemandenvyfreepricingproblemwithmetricsubstitutabilityincubictime
AT mariosalvatierra shortcommunicationoptimallysolvingtheunitdemandenvyfreepricingproblemwithmetricsubstitutabilityincubictime
AT juangcolonna shortcommunicationoptimallysolvingtheunitdemandenvyfreepricingproblemwithmetricsubstitutabilityincubictime