A Force Measurement Method Based on Flexible PDMS Grating

With the rapid development of flexible materials, various high-performance biocompatible flexible sensors have been proposed for specific measurement applications. Among these materials, polydimethylsiloxane (PDMS) is one of the most popular polymers by curing the mixture of pre-polymer (base) and c...

Full description

Bibliographic Details
Main Authors: Chengyu Jin, Cui Ma, Zhile Yang, Hui Lin
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/7/2296
Description
Summary:With the rapid development of flexible materials, various high-performance biocompatible flexible sensors have been proposed for specific measurement applications. Among these materials, polydimethylsiloxane (PDMS) is one of the most popular polymers by curing the mixture of pre-polymer (base) and cross-linker (curing agent). In this paper, a force measurement method based on PDMS grating is introduced. The PDMS grating is cast from a commercial master grating, which is precise, low-cost, and easy to follow. The elastic modulus can be controlled by the curing temperature and the mixing ratio. The PDMS grating is tested using a tension testing machine. As the stretching force increases, the grating line-spacing simultaneously increases and the diffraction light spot shifts. By capturing the light spot shift using a camera, the relationship between light spot position and stretching force is established and evaluated. Experimental results show that the linearity (R<sup>2</sup>) of the proposed method is better than 0.998, adding that the sensitivity is ~0.5–0.7N/mm and the accuracy is up to 0.05N.
ISSN:2076-3417