Tomato Plant Microbiota under Conventional and Organic Fertilization Regimes in a Soilless Culture System

Tomato is the main vegetable cultivated under soilless culture systems (SCSs); production of organic tomato under SCSs has increased due to consumer demands for healthier and environmentally friendly vegetables. However, organic tomato production under SCSs has been associated with low crop performa...

Full description

Bibliographic Details
Main Authors: Carolina N. Resendiz-Nava, Fernando Alonso-Onofre, Hilda V. Silva-Rojas, Angel Rebollar-Alviter, Dulce M. Rivera-Pastrana, Matthew J. Stasiewicz, Gerardo M. Nava, Edmundo M. Mercado-Silva
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Microorganisms
Subjects:
Online Access:https://www.mdpi.com/2076-2607/11/7/1633
_version_ 1797588220886646784
author Carolina N. Resendiz-Nava
Fernando Alonso-Onofre
Hilda V. Silva-Rojas
Angel Rebollar-Alviter
Dulce M. Rivera-Pastrana
Matthew J. Stasiewicz
Gerardo M. Nava
Edmundo M. Mercado-Silva
author_facet Carolina N. Resendiz-Nava
Fernando Alonso-Onofre
Hilda V. Silva-Rojas
Angel Rebollar-Alviter
Dulce M. Rivera-Pastrana
Matthew J. Stasiewicz
Gerardo M. Nava
Edmundo M. Mercado-Silva
author_sort Carolina N. Resendiz-Nava
collection DOAJ
description Tomato is the main vegetable cultivated under soilless culture systems (SCSs); production of organic tomato under SCSs has increased due to consumer demands for healthier and environmentally friendly vegetables. However, organic tomato production under SCSs has been associated with low crop performance and fruit quality defects. These agricultural deficiencies could be linked to alterations in tomato plant microbiota; nonetheless, this issue has not been sufficiently addressed. Thus, the main goal of the present study was to characterize the rhizosphere and phyllosphere of tomato plants cultivated under conventional and organic SCSs. To accomplish this goal, tomato plants grown in commercial greenhouses under conventional or organic SCSs were tested at 8, 26, and 44 weeks after seedling transplantation. Substrate (<i>n</i> = 24), root (<i>n =</i> 24), and fruit (<i>n =</i> 24) composite samples were subjected to DNA extraction and high-throughput <i>16S rRNA</i> gene sequencing. The present study revealed that the tomato core microbiota was predominantly constituted by Proteobacteria, Actinobacteria, and Firmicutes. Remarkably, six bacterial families, <i>Bacillaceae</i>, <i>Microbacteriaceae</i>, <i>Nocardioidaceae</i>, <i>Pseudomonadaceae</i>, <i>Rhodobacteraceae</i>, and <i>Sphingomonadaceae</i>, were shared among all substrate, rhizosphere, and fruit samples. Importantly, it was shown that plants under organic SCSs undergo a dysbiosis characterized by significant changes in the relative abundance of <i>Bradyrhizobiaceae</i>, <i>Caulobacteraceae</i>, <i>Chitinophagaceae</i>, <i>Enterobacteriaceae</i>, <i>Erythrobacteraceae</i>, <i>Flavobacteriaceae</i>, <i>Nocardioidaceae</i>, <i>Rhodobacteraceae</i>, and <i>Streptomycetaceae</i>. These results suggest that microbial alterations in substrates, roots, and fruits could be potential factors in contributing to the crop performance and fruit quality deficiencies observed in organic SCSs.
first_indexed 2024-03-11T00:49:04Z
format Article
id doaj.art-9bc2e5adcd154463a301bfbe4580b05a
institution Directory Open Access Journal
issn 2076-2607
language English
last_indexed 2024-03-11T00:49:04Z
publishDate 2023-06-01
publisher MDPI AG
record_format Article
series Microorganisms
spelling doaj.art-9bc2e5adcd154463a301bfbe4580b05a2023-11-18T20:34:14ZengMDPI AGMicroorganisms2076-26072023-06-01117163310.3390/microorganisms11071633Tomato Plant Microbiota under Conventional and Organic Fertilization Regimes in a Soilless Culture SystemCarolina N. Resendiz-Nava0Fernando Alonso-Onofre1Hilda V. Silva-Rojas2Angel Rebollar-Alviter3Dulce M. Rivera-Pastrana4Matthew J. Stasiewicz5Gerardo M. Nava6Edmundo M. Mercado-Silva7Facultad de Quimica, Universidad Autonoma de Queretaro, Cerro de las Campanas S/N, Queretaro 76010, Queretaro, MexicoCentro Universitario CEICKOR, Colon 76299, Queretaro, MexicoPosgrado en Recursos Geneticos y Productividad, Produccion de Semillas, Colegio de Postgraduados, Km 36.5 Carretera Mexico-Texcoco, Texcoco 56264, MexicoCentro Regional Morelia, Universidad Autonoma de Chapingo, Morelia 58170, Michoacan, MexicoFacultad de Quimica, Universidad Autonoma de Queretaro, Cerro de las Campanas S/N, Queretaro 76010, Queretaro, MexicoDepartment of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 1302W Pennsylvania Ave, Urbana, IL 61801, USAFacultad de Quimica, Universidad Autonoma de Queretaro, Cerro de las Campanas S/N, Queretaro 76010, Queretaro, MexicoFacultad de Quimica, Universidad Autonoma de Queretaro, Cerro de las Campanas S/N, Queretaro 76010, Queretaro, MexicoTomato is the main vegetable cultivated under soilless culture systems (SCSs); production of organic tomato under SCSs has increased due to consumer demands for healthier and environmentally friendly vegetables. However, organic tomato production under SCSs has been associated with low crop performance and fruit quality defects. These agricultural deficiencies could be linked to alterations in tomato plant microbiota; nonetheless, this issue has not been sufficiently addressed. Thus, the main goal of the present study was to characterize the rhizosphere and phyllosphere of tomato plants cultivated under conventional and organic SCSs. To accomplish this goal, tomato plants grown in commercial greenhouses under conventional or organic SCSs were tested at 8, 26, and 44 weeks after seedling transplantation. Substrate (<i>n</i> = 24), root (<i>n =</i> 24), and fruit (<i>n =</i> 24) composite samples were subjected to DNA extraction and high-throughput <i>16S rRNA</i> gene sequencing. The present study revealed that the tomato core microbiota was predominantly constituted by Proteobacteria, Actinobacteria, and Firmicutes. Remarkably, six bacterial families, <i>Bacillaceae</i>, <i>Microbacteriaceae</i>, <i>Nocardioidaceae</i>, <i>Pseudomonadaceae</i>, <i>Rhodobacteraceae</i>, and <i>Sphingomonadaceae</i>, were shared among all substrate, rhizosphere, and fruit samples. Importantly, it was shown that plants under organic SCSs undergo a dysbiosis characterized by significant changes in the relative abundance of <i>Bradyrhizobiaceae</i>, <i>Caulobacteraceae</i>, <i>Chitinophagaceae</i>, <i>Enterobacteriaceae</i>, <i>Erythrobacteraceae</i>, <i>Flavobacteriaceae</i>, <i>Nocardioidaceae</i>, <i>Rhodobacteraceae</i>, and <i>Streptomycetaceae</i>. These results suggest that microbial alterations in substrates, roots, and fruits could be potential factors in contributing to the crop performance and fruit quality deficiencies observed in organic SCSs.https://www.mdpi.com/2076-2607/11/7/1633<i>16S rRNA</i>core microbiotaorganicphyllosphererhizospheresoilless
spellingShingle Carolina N. Resendiz-Nava
Fernando Alonso-Onofre
Hilda V. Silva-Rojas
Angel Rebollar-Alviter
Dulce M. Rivera-Pastrana
Matthew J. Stasiewicz
Gerardo M. Nava
Edmundo M. Mercado-Silva
Tomato Plant Microbiota under Conventional and Organic Fertilization Regimes in a Soilless Culture System
Microorganisms
<i>16S rRNA</i>
core microbiota
organic
phyllosphere
rhizosphere
soilless
title Tomato Plant Microbiota under Conventional and Organic Fertilization Regimes in a Soilless Culture System
title_full Tomato Plant Microbiota under Conventional and Organic Fertilization Regimes in a Soilless Culture System
title_fullStr Tomato Plant Microbiota under Conventional and Organic Fertilization Regimes in a Soilless Culture System
title_full_unstemmed Tomato Plant Microbiota under Conventional and Organic Fertilization Regimes in a Soilless Culture System
title_short Tomato Plant Microbiota under Conventional and Organic Fertilization Regimes in a Soilless Culture System
title_sort tomato plant microbiota under conventional and organic fertilization regimes in a soilless culture system
topic <i>16S rRNA</i>
core microbiota
organic
phyllosphere
rhizosphere
soilless
url https://www.mdpi.com/2076-2607/11/7/1633
work_keys_str_mv AT carolinanresendiznava tomatoplantmicrobiotaunderconventionalandorganicfertilizationregimesinasoillessculturesystem
AT fernandoalonsoonofre tomatoplantmicrobiotaunderconventionalandorganicfertilizationregimesinasoillessculturesystem
AT hildavsilvarojas tomatoplantmicrobiotaunderconventionalandorganicfertilizationregimesinasoillessculturesystem
AT angelrebollaralviter tomatoplantmicrobiotaunderconventionalandorganicfertilizationregimesinasoillessculturesystem
AT dulcemriverapastrana tomatoplantmicrobiotaunderconventionalandorganicfertilizationregimesinasoillessculturesystem
AT matthewjstasiewicz tomatoplantmicrobiotaunderconventionalandorganicfertilizationregimesinasoillessculturesystem
AT gerardomnava tomatoplantmicrobiotaunderconventionalandorganicfertilizationregimesinasoillessculturesystem
AT edmundommercadosilva tomatoplantmicrobiotaunderconventionalandorganicfertilizationregimesinasoillessculturesystem