Thermodynamic and cloud evolution in a cold-air outbreak during HALO-(AC)<sup>3</sup>: quasi-Lagrangian observations compared to the ERA5 and CARRA reanalyses

<p>Arctic air masses undergo intense transformations when moving southward from closed sea ice to warmer open waters in marine cold-air outbreaks (CAOs). Due to the lack of measurements of diabatic heating and moisture uptake rates along CAO flows, studies often depend on atmospheric reanalys...

Full description

Bibliographic Details
Main Authors: B. Kirbus, I. Schirmacher, M. Klingebiel, M. Schäfer, A. Ehrlich, N. Slättberg, J. Lucke, M. Moser, H. Müller, M. Wendisch
Format: Article
Language:English
Published: Copernicus Publications 2024-04-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/24/3883/2024/acp-24-3883-2024.pdf
_version_ 1797229328378888192
author B. Kirbus
I. Schirmacher
M. Klingebiel
M. Schäfer
A. Ehrlich
N. Slättberg
J. Lucke
J. Lucke
M. Moser
H. Müller
M. Wendisch
author_facet B. Kirbus
I. Schirmacher
M. Klingebiel
M. Schäfer
A. Ehrlich
N. Slättberg
J. Lucke
J. Lucke
M. Moser
H. Müller
M. Wendisch
author_sort B. Kirbus
collection DOAJ
description <p>Arctic air masses undergo intense transformations when moving southward from closed sea ice to warmer open waters in marine cold-air outbreaks (CAOs). Due to the lack of measurements of diabatic heating and moisture uptake rates along CAO flows, studies often depend on atmospheric reanalysis output. However, the uncertainties connected to those datasets remain unclear. Here, we present height-resolved airborne observations of diabatic heating, moisture uptake, and cloud evolution measured in a quasi-Lagrangian manner. The investigated CAO was observed on 1 April 2022 during the HALO-(AC)<span class="inline-formula"><sup>3</sup></span> campaign. Shortly after passing the sea-ice edge, maximum diabatic heating rates over 6 <span class="inline-formula">K h<sup>−1</sup></span> and moisture uptake over 0.3 <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">g</mi><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">kg</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">h</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="3cfaa5d9f653db1d0fd69eb6901d9103"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-24-3883-2024-ie00001.svg" width="49pt" height="15pt" src="acp-24-3883-2024-ie00001.png"/></svg:svg></span></span> were measured near the surface. Clouds started forming and vertical mixing within the deepening boundary layer intensified. The quasi-Lagrangian observations are compared with the fifth-generation global reanalysis (ERA5) and the Copernicus Arctic Regional Reanalysis (CARRA). Compared to these observations, the mean absolute errors of ERA5 versus CARRA data are 14 % higher for air temperature over sea ice (1.14 K versus 1.00 K) and 62 % higher for specific humidity over ice-free ocean (0.112 <span class="inline-formula">g kg<sup>−1</sup></span> versus 0.069 <span class="inline-formula">g kg<sup>−1</sup></span>). We relate these differences to issues with the representation of the marginal ice zone and corresponding surface fluxes in ERA5, as well as the cloud scheme producing excess liquid-bearing, precipitating clouds, which causes a too-dry marine boundary layer. CARRA's high spatial resolution and demonstrated higher fidelity towards observations make it a promising candidate for further studies on Arctic air mass transformations.</p>
first_indexed 2024-04-24T15:10:51Z
format Article
id doaj.art-9bccf97a74a54abd9e5cec03ff4198c9
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-04-24T15:10:51Z
publishDate 2024-04-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-9bccf97a74a54abd9e5cec03ff4198c92024-04-02T11:22:05ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242024-04-01243883390410.5194/acp-24-3883-2024Thermodynamic and cloud evolution in a cold-air outbreak during HALO-(AC)<sup>3</sup>: quasi-Lagrangian observations compared to the ERA5 and CARRA reanalysesB. Kirbus0I. Schirmacher1M. Klingebiel2M. Schäfer3A. Ehrlich4N. Slättberg5J. Lucke6J. Lucke7M. Moser8H. Müller9M. Wendisch10Leipzig Institute for Meteorology, Leipzig University, Leipzig, GermanyInstitute of Geophysics and Meteorology, University of Cologne, Cologne, GermanyLeipzig Institute for Meteorology, Leipzig University, Leipzig, GermanyLeipzig Institute for Meteorology, Leipzig University, Leipzig, GermanyLeipzig Institute for Meteorology, Leipzig University, Leipzig, GermanyAlfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Potsdam, GermanyInstitute of Atmospheric Physics, German Aerospace Center (DLR), Weßling, GermanyFaculty of Aerospace Engineering, Delft University of Technology, Delft, the NetherlandsInstitute of Atmospheric Physics, German Aerospace Center (DLR), Weßling, GermanyLeipzig Institute for Meteorology, Leipzig University, Leipzig, GermanyLeipzig Institute for Meteorology, Leipzig University, Leipzig, Germany<p>Arctic air masses undergo intense transformations when moving southward from closed sea ice to warmer open waters in marine cold-air outbreaks (CAOs). Due to the lack of measurements of diabatic heating and moisture uptake rates along CAO flows, studies often depend on atmospheric reanalysis output. However, the uncertainties connected to those datasets remain unclear. Here, we present height-resolved airborne observations of diabatic heating, moisture uptake, and cloud evolution measured in a quasi-Lagrangian manner. The investigated CAO was observed on 1 April 2022 during the HALO-(AC)<span class="inline-formula"><sup>3</sup></span> campaign. Shortly after passing the sea-ice edge, maximum diabatic heating rates over 6 <span class="inline-formula">K h<sup>−1</sup></span> and moisture uptake over 0.3 <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">g</mi><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">kg</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">h</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="3cfaa5d9f653db1d0fd69eb6901d9103"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-24-3883-2024-ie00001.svg" width="49pt" height="15pt" src="acp-24-3883-2024-ie00001.png"/></svg:svg></span></span> were measured near the surface. Clouds started forming and vertical mixing within the deepening boundary layer intensified. The quasi-Lagrangian observations are compared with the fifth-generation global reanalysis (ERA5) and the Copernicus Arctic Regional Reanalysis (CARRA). Compared to these observations, the mean absolute errors of ERA5 versus CARRA data are 14 % higher for air temperature over sea ice (1.14 K versus 1.00 K) and 62 % higher for specific humidity over ice-free ocean (0.112 <span class="inline-formula">g kg<sup>−1</sup></span> versus 0.069 <span class="inline-formula">g kg<sup>−1</sup></span>). We relate these differences to issues with the representation of the marginal ice zone and corresponding surface fluxes in ERA5, as well as the cloud scheme producing excess liquid-bearing, precipitating clouds, which causes a too-dry marine boundary layer. CARRA's high spatial resolution and demonstrated higher fidelity towards observations make it a promising candidate for further studies on Arctic air mass transformations.</p>https://acp.copernicus.org/articles/24/3883/2024/acp-24-3883-2024.pdf
spellingShingle B. Kirbus
I. Schirmacher
M. Klingebiel
M. Schäfer
A. Ehrlich
N. Slättberg
J. Lucke
J. Lucke
M. Moser
H. Müller
M. Wendisch
Thermodynamic and cloud evolution in a cold-air outbreak during HALO-(AC)<sup>3</sup>: quasi-Lagrangian observations compared to the ERA5 and CARRA reanalyses
Atmospheric Chemistry and Physics
title Thermodynamic and cloud evolution in a cold-air outbreak during HALO-(AC)<sup>3</sup>: quasi-Lagrangian observations compared to the ERA5 and CARRA reanalyses
title_full Thermodynamic and cloud evolution in a cold-air outbreak during HALO-(AC)<sup>3</sup>: quasi-Lagrangian observations compared to the ERA5 and CARRA reanalyses
title_fullStr Thermodynamic and cloud evolution in a cold-air outbreak during HALO-(AC)<sup>3</sup>: quasi-Lagrangian observations compared to the ERA5 and CARRA reanalyses
title_full_unstemmed Thermodynamic and cloud evolution in a cold-air outbreak during HALO-(AC)<sup>3</sup>: quasi-Lagrangian observations compared to the ERA5 and CARRA reanalyses
title_short Thermodynamic and cloud evolution in a cold-air outbreak during HALO-(AC)<sup>3</sup>: quasi-Lagrangian observations compared to the ERA5 and CARRA reanalyses
title_sort thermodynamic and cloud evolution in a cold air outbreak during halo ac sup 3 sup quasi lagrangian observations compared to the era5 and carra reanalyses
url https://acp.copernicus.org/articles/24/3883/2024/acp-24-3883-2024.pdf
work_keys_str_mv AT bkirbus thermodynamicandcloudevolutioninacoldairoutbreakduringhaloacsup3supquasilagrangianobservationscomparedtotheera5andcarrareanalyses
AT ischirmacher thermodynamicandcloudevolutioninacoldairoutbreakduringhaloacsup3supquasilagrangianobservationscomparedtotheera5andcarrareanalyses
AT mklingebiel thermodynamicandcloudevolutioninacoldairoutbreakduringhaloacsup3supquasilagrangianobservationscomparedtotheera5andcarrareanalyses
AT mschafer thermodynamicandcloudevolutioninacoldairoutbreakduringhaloacsup3supquasilagrangianobservationscomparedtotheera5andcarrareanalyses
AT aehrlich thermodynamicandcloudevolutioninacoldairoutbreakduringhaloacsup3supquasilagrangianobservationscomparedtotheera5andcarrareanalyses
AT nslattberg thermodynamicandcloudevolutioninacoldairoutbreakduringhaloacsup3supquasilagrangianobservationscomparedtotheera5andcarrareanalyses
AT jlucke thermodynamicandcloudevolutioninacoldairoutbreakduringhaloacsup3supquasilagrangianobservationscomparedtotheera5andcarrareanalyses
AT jlucke thermodynamicandcloudevolutioninacoldairoutbreakduringhaloacsup3supquasilagrangianobservationscomparedtotheera5andcarrareanalyses
AT mmoser thermodynamicandcloudevolutioninacoldairoutbreakduringhaloacsup3supquasilagrangianobservationscomparedtotheera5andcarrareanalyses
AT hmuller thermodynamicandcloudevolutioninacoldairoutbreakduringhaloacsup3supquasilagrangianobservationscomparedtotheera5andcarrareanalyses
AT mwendisch thermodynamicandcloudevolutioninacoldairoutbreakduringhaloacsup3supquasilagrangianobservationscomparedtotheera5andcarrareanalyses