Exploring the Characteristics of Δ<sub><i>h</i></sub> Bivariate Appell Polynomials: An In-Depth Investigation and Extension through Fractional Operators

The objective of this article is to introduce the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>∆</mo><mi>h</mi></msub></semantics></math></inline-formula...

Full description

Bibliographic Details
Main Author: Musawa Yahya Almusawa
Format: Article
Language:English
Published: MDPI AG 2024-01-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/8/1/67
_version_ 1827372292459462656
author Musawa Yahya Almusawa
author_facet Musawa Yahya Almusawa
author_sort Musawa Yahya Almusawa
collection DOAJ
description The objective of this article is to introduce the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>∆</mo><mi>h</mi></msub></semantics></math></inline-formula> bivariate Appell polynomials <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow></mrow><msub><mo>∆</mo><mi>h</mi></msub></msub><msubsup><mi mathvariant="double-struck">A</mi><mi>s</mi><mrow><mo>[</mo><mi>r</mi><mo>]</mo></mrow></msubsup><mrow><mo>(</mo><mi>λ</mi><mo>,</mo><mi>η</mi><mo>;</mo><mi>h</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and their extended form via fractional operators. The study described in this paper follows the line of study in which the monomiality principle is used to develop new results. It is further discovered that these polynomials satisfy various well-known fundamental properties and explicit forms. The explicit series representation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>∆</mo><mi>h</mi></msub></semantics></math></inline-formula> bivariate Gould–Hopper polynomials is first obtained, and, using this outcome, the explicit series representation of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>∆</mo><mi>h</mi></msub></semantics></math></inline-formula> bivariate Appell polynomials is further given. The quasimonomial properties fulfilled by bivariate Appell polynomials <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>∆</mo><mi>h</mi></msub></semantics></math></inline-formula> are also proved by demonstrating that the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>∆</mo><mi>h</mi></msub></semantics></math></inline-formula> bivariate Appell polynomials exhibit certain properties related to their behavior under multiplication and differentiation operators. The determinant form of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>∆</mo><mi>h</mi></msub></semantics></math></inline-formula> bivariate Appell polynomials is provided, and symmetric identities for the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>∆</mo><mi>h</mi></msub></semantics></math></inline-formula> bivariate Appell polynomials are also exhibited. By employing the concept of the forward difference operator, operational connections are established, and certain applications are derived. Different Appell polynomial members can be generated by using appropriate choices of functions in the generating expression obtained in this study for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>∆</mo><mi>h</mi></msub></semantics></math></inline-formula> bivariate Appell polynomials. Additionally, generating relations for the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>∆</mo><mi>h</mi></msub></semantics></math></inline-formula> bivariate Bernoulli and Euler polynomials, as well as for Genocchi polynomials, are established, and corresponding results are obtained for those polynomials.
first_indexed 2024-03-08T10:55:29Z
format Article
id doaj.art-9bdcf224a6a9490bb6b2e6b5a88b566c
institution Directory Open Access Journal
issn 2504-3110
language English
last_indexed 2024-03-08T10:55:29Z
publishDate 2024-01-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj.art-9bdcf224a6a9490bb6b2e6b5a88b566c2024-01-26T16:36:38ZengMDPI AGFractal and Fractional2504-31102024-01-01816710.3390/fractalfract8010067Exploring the Characteristics of Δ<sub><i>h</i></sub> Bivariate Appell Polynomials: An In-Depth Investigation and Extension through Fractional OperatorsMusawa Yahya Almusawa0Department of Mathematics, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Saudi ArabiaThe objective of this article is to introduce the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>∆</mo><mi>h</mi></msub></semantics></math></inline-formula> bivariate Appell polynomials <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow></mrow><msub><mo>∆</mo><mi>h</mi></msub></msub><msubsup><mi mathvariant="double-struck">A</mi><mi>s</mi><mrow><mo>[</mo><mi>r</mi><mo>]</mo></mrow></msubsup><mrow><mo>(</mo><mi>λ</mi><mo>,</mo><mi>η</mi><mo>;</mo><mi>h</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and their extended form via fractional operators. The study described in this paper follows the line of study in which the monomiality principle is used to develop new results. It is further discovered that these polynomials satisfy various well-known fundamental properties and explicit forms. The explicit series representation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>∆</mo><mi>h</mi></msub></semantics></math></inline-formula> bivariate Gould–Hopper polynomials is first obtained, and, using this outcome, the explicit series representation of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>∆</mo><mi>h</mi></msub></semantics></math></inline-formula> bivariate Appell polynomials is further given. The quasimonomial properties fulfilled by bivariate Appell polynomials <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>∆</mo><mi>h</mi></msub></semantics></math></inline-formula> are also proved by demonstrating that the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>∆</mo><mi>h</mi></msub></semantics></math></inline-formula> bivariate Appell polynomials exhibit certain properties related to their behavior under multiplication and differentiation operators. The determinant form of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>∆</mo><mi>h</mi></msub></semantics></math></inline-formula> bivariate Appell polynomials is provided, and symmetric identities for the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>∆</mo><mi>h</mi></msub></semantics></math></inline-formula> bivariate Appell polynomials are also exhibited. By employing the concept of the forward difference operator, operational connections are established, and certain applications are derived. Different Appell polynomial members can be generated by using appropriate choices of functions in the generating expression obtained in this study for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>∆</mo><mi>h</mi></msub></semantics></math></inline-formula> bivariate Appell polynomials. Additionally, generating relations for the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>∆</mo><mi>h</mi></msub></semantics></math></inline-formula> bivariate Bernoulli and Euler polynomials, as well as for Genocchi polynomials, are established, and corresponding results are obtained for those polynomials.https://www.mdpi.com/2504-3110/8/1/67Δ<sub><i>h</i></sub> special polynomialsfractional operatorsAppell polynomialsmonomiality principleoperational formalismdeterminant form
spellingShingle Musawa Yahya Almusawa
Exploring the Characteristics of Δ<sub><i>h</i></sub> Bivariate Appell Polynomials: An In-Depth Investigation and Extension through Fractional Operators
Fractal and Fractional
Δ<sub><i>h</i></sub> special polynomials
fractional operators
Appell polynomials
monomiality principle
operational formalism
determinant form
title Exploring the Characteristics of Δ<sub><i>h</i></sub> Bivariate Appell Polynomials: An In-Depth Investigation and Extension through Fractional Operators
title_full Exploring the Characteristics of Δ<sub><i>h</i></sub> Bivariate Appell Polynomials: An In-Depth Investigation and Extension through Fractional Operators
title_fullStr Exploring the Characteristics of Δ<sub><i>h</i></sub> Bivariate Appell Polynomials: An In-Depth Investigation and Extension through Fractional Operators
title_full_unstemmed Exploring the Characteristics of Δ<sub><i>h</i></sub> Bivariate Appell Polynomials: An In-Depth Investigation and Extension through Fractional Operators
title_short Exploring the Characteristics of Δ<sub><i>h</i></sub> Bivariate Appell Polynomials: An In-Depth Investigation and Extension through Fractional Operators
title_sort exploring the characteristics of δ sub i h i sub bivariate appell polynomials an in depth investigation and extension through fractional operators
topic Δ<sub><i>h</i></sub> special polynomials
fractional operators
Appell polynomials
monomiality principle
operational formalism
determinant form
url https://www.mdpi.com/2504-3110/8/1/67
work_keys_str_mv AT musawayahyaalmusawa exploringthecharacteristicsofdsubihisubbivariateappellpolynomialsanindepthinvestigationandextensionthroughfractionaloperators