High-accuracy characterization of pyroelectric materials: A noncontact method based on surface potential measurements
The characterization of pyroelectric materials is essential for the design of pyroelectric-based devices. Pyroelectric current measurement is the commonly employed method, but can be complex and requires surface electrodes. Here, we present noncontact electrostatic voltmeter measurements as a simple...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
World Scientific Publishing
2023-08-01
|
Series: | Journal of Advanced Dielectrics |
Subjects: | |
Online Access: | https://www.worldscientific.com/doi/10.1142/S2010135X23410023 |
Summary: | The characterization of pyroelectric materials is essential for the design of pyroelectric-based devices. Pyroelectric current measurement is the commonly employed method, but can be complex and requires surface electrodes. Here, we present noncontact electrostatic voltmeter measurements as a simple but highly accurate alternative, by assessing thermally-induced pyroelectric surface potential variations. We introduce a refined model that relates the surface potential variations to both the pyroelectric coefficient and the characteristic figure of merit (FOM) and test the model with square-shaped samples made from PVDF, LiNbO3 and LiTaO3. The characteristic pyroelectric coefficient for PVDF, LiNbO3 and LiTaO3 was found to be 33.4, 59.9 and 208.4 [Formula: see text]C m[Formula: see text] K[Formula: see text], respectively. These values are in perfect agreement with literature values, and they differ by less than 2.5% from values that we have obtained with standard pyroelectric current measurements for comparison. |
---|---|
ISSN: | 2010-135X 2010-1368 |