Penerapan Blok SE-NET Pada Deep Learning Inceptionv3 untuk Meningkatkan Deteksi Penyakit Mpox pada Manusia

Mpox atau cacar monyet adalah penyakit yang disebabkan oleh virus monkeypox. Penelitian terdahulu membuktikan sudah tersedia beberapa pre-trained model yang terbukti mampu mendeteksi penyakit mpox dengan menggunakan dataset MSLD (Monkeypox Skin Lesion Dataset) seperti VGG16, ResNet50, InceptionV3,...

Full description

Bibliographic Details
Main Authors: M. Bakhara Alief Rachman, Aliyah Kurniasih, Andika Sundawijaya, Ahlijati Nuraminah
Format: Article
Language:Indonesian
Published: University of Brawijaya 2023-12-01
Series:Jurnal Teknologi Informasi dan Ilmu Komputer
Subjects:
Online Access:https://jtiik.ub.ac.id/index.php/jtiik/article/view/7978
_version_ 1797194677228666880
author M. Bakhara Alief Rachman
Aliyah Kurniasih
Andika Sundawijaya
Ahlijati Nuraminah
author_facet M. Bakhara Alief Rachman
Aliyah Kurniasih
Andika Sundawijaya
Ahlijati Nuraminah
author_sort M. Bakhara Alief Rachman
collection DOAJ
description Mpox atau cacar monyet adalah penyakit yang disebabkan oleh virus monkeypox. Penelitian terdahulu membuktikan sudah tersedia beberapa pre-trained model yang terbukti mampu mendeteksi penyakit mpox dengan menggunakan dataset MSLD (Monkeypox Skin Lesion Dataset) seperti VGG16, ResNet50, InceptionV3, dan penggabungan ketiga model tersebut. Dari penelitian tersebut didapatkan hasil model InceptionV3 memiliki tingkat akurasi paling rendah dengan nilai 74.07% berbanding jauh dengan ResNet50 yang mampu hingga 82.96% dan menjadikannya akurasi tertinggi. Namun, terdapat peluang akurasi model InceptionV3 mampu ditingkatkan. Oleh sebab itu, pada penelitian diimplementasikan arsitektur baru dan penambahan blok SE-Net (Squeeze and Excitation Networks) pada pre-trained model InceptionV3. Untuk training dan evaluasi model akan menggunakan dataset MSLD. Penelitian ini dilaksanakan dengan harapan mampu meningkatkan akurasi pre-trained model InceptionV3 dalam mendeteksi penyakit mpox. Dari hasil penelitian berdasarkan nilai confusion matrix penerapan arsitektur baru berhasil dilakukan terbukti dengan peningkatan akurasi dari 74.07% menjadi 82.22%. Selain itu, penambahan blok SE-Net terhadap arsitektur baru terbukti mampu meningkatkan akurasi menjadi 91.11% dan menjadikan performa InceptionV3 menjadi lebih baik dari akurasi ResNet50. Dari hasil penelitian tersebut memberikan rekomendasi untuk melakukan percobaan dengan mengganti pre-trained model, blok SE-Net, dan jumlah perbandingan dataset antara train, validation, dan test.   Abstract   Mpox or monkeypox is a disease caused by the monkeypox virus. Previous research has proven that there are several pre-trained models that are proven to be able to detect mpox disease using MSLD (Monkeypox Skin Lesion Dataset) datasets such as VGG16, ResNet50, InceptionV3, and a combination of these three models. From this research, it was found that the InceptionV3 model has the lowest level of accuracy with a value of 74.07% compared to ResNet50 which is capable of up to 82.96% and makes it the highest accuracy. However, there is a chance that accuracy can be improved. Therefore, this research will apply a new architecture and SE-Net blocks to the InceptionV3 pre-trained model using the MSLD dataset. From the results of research based on the value of the confusion matrix the application of the new architecture was successfully carried out as evidenced by an increase in accuracy from 74.07% to 82.22%. In addition, the addition of the SE-Net block to the new architecture is proven to be able to increase accuracy to 91.11% and make InceptionV3's performance better than ResNet50's accuracy. The results of this study provide recommendations for conducting experiments by changing the pre-trained model, the SE-Net block, and the number of dataset comparisons between train, validation, and test.
first_indexed 2024-04-24T06:00:05Z
format Article
id doaj.art-9beb3d203a4049059abfae20438a5a29
institution Directory Open Access Journal
issn 2355-7699
2528-6579
language Indonesian
last_indexed 2024-04-24T06:00:05Z
publishDate 2023-12-01
publisher University of Brawijaya
record_format Article
series Jurnal Teknologi Informasi dan Ilmu Komputer
spelling doaj.art-9beb3d203a4049059abfae20438a5a292024-04-23T08:43:49ZindUniversity of BrawijayaJurnal Teknologi Informasi dan Ilmu Komputer2355-76992528-65792023-12-0110710.25126/jtiik.1077978Penerapan Blok SE-NET Pada Deep Learning Inceptionv3 untuk Meningkatkan Deteksi Penyakit Mpox pada ManusiaM. Bakhara Alief Rachman0Aliyah Kurniasih1Andika Sundawijaya2Ahlijati Nuraminah3Sekolah Tinggi Ilmu Manajemen & Ilmu Komputer ESQ, JakartaSekolah Tinggi Ilmu Manajemen & Ilmu Komputer ESQ, JakartaSekolah Tinggi Ilmu Manajemen & Ilmu Komputer ESQ, JakartaSekolah Tinggi Ilmu Manajemen & Ilmu Komputer ESQ, Jakarta Mpox atau cacar monyet adalah penyakit yang disebabkan oleh virus monkeypox. Penelitian terdahulu membuktikan sudah tersedia beberapa pre-trained model yang terbukti mampu mendeteksi penyakit mpox dengan menggunakan dataset MSLD (Monkeypox Skin Lesion Dataset) seperti VGG16, ResNet50, InceptionV3, dan penggabungan ketiga model tersebut. Dari penelitian tersebut didapatkan hasil model InceptionV3 memiliki tingkat akurasi paling rendah dengan nilai 74.07% berbanding jauh dengan ResNet50 yang mampu hingga 82.96% dan menjadikannya akurasi tertinggi. Namun, terdapat peluang akurasi model InceptionV3 mampu ditingkatkan. Oleh sebab itu, pada penelitian diimplementasikan arsitektur baru dan penambahan blok SE-Net (Squeeze and Excitation Networks) pada pre-trained model InceptionV3. Untuk training dan evaluasi model akan menggunakan dataset MSLD. Penelitian ini dilaksanakan dengan harapan mampu meningkatkan akurasi pre-trained model InceptionV3 dalam mendeteksi penyakit mpox. Dari hasil penelitian berdasarkan nilai confusion matrix penerapan arsitektur baru berhasil dilakukan terbukti dengan peningkatan akurasi dari 74.07% menjadi 82.22%. Selain itu, penambahan blok SE-Net terhadap arsitektur baru terbukti mampu meningkatkan akurasi menjadi 91.11% dan menjadikan performa InceptionV3 menjadi lebih baik dari akurasi ResNet50. Dari hasil penelitian tersebut memberikan rekomendasi untuk melakukan percobaan dengan mengganti pre-trained model, blok SE-Net, dan jumlah perbandingan dataset antara train, validation, dan test.   Abstract   Mpox or monkeypox is a disease caused by the monkeypox virus. Previous research has proven that there are several pre-trained models that are proven to be able to detect mpox disease using MSLD (Monkeypox Skin Lesion Dataset) datasets such as VGG16, ResNet50, InceptionV3, and a combination of these three models. From this research, it was found that the InceptionV3 model has the lowest level of accuracy with a value of 74.07% compared to ResNet50 which is capable of up to 82.96% and makes it the highest accuracy. However, there is a chance that accuracy can be improved. Therefore, this research will apply a new architecture and SE-Net blocks to the InceptionV3 pre-trained model using the MSLD dataset. From the results of research based on the value of the confusion matrix the application of the new architecture was successfully carried out as evidenced by an increase in accuracy from 74.07% to 82.22%. In addition, the addition of the SE-Net block to the new architecture is proven to be able to increase accuracy to 91.11% and make InceptionV3's performance better than ResNet50's accuracy. The results of this study provide recommendations for conducting experiments by changing the pre-trained model, the SE-Net block, and the number of dataset comparisons between train, validation, and test. https://jtiik.ub.ac.id/index.php/jtiik/article/view/7978MpoxMSLD (Monkeypox Skin Lesion Dataset)CNN (Convolutional Neural Network)InceptionV3SE-Net
spellingShingle M. Bakhara Alief Rachman
Aliyah Kurniasih
Andika Sundawijaya
Ahlijati Nuraminah
Penerapan Blok SE-NET Pada Deep Learning Inceptionv3 untuk Meningkatkan Deteksi Penyakit Mpox pada Manusia
Jurnal Teknologi Informasi dan Ilmu Komputer
Mpox
MSLD (Monkeypox Skin Lesion Dataset)
CNN (Convolutional Neural Network)
InceptionV3
SE-Net
title Penerapan Blok SE-NET Pada Deep Learning Inceptionv3 untuk Meningkatkan Deteksi Penyakit Mpox pada Manusia
title_full Penerapan Blok SE-NET Pada Deep Learning Inceptionv3 untuk Meningkatkan Deteksi Penyakit Mpox pada Manusia
title_fullStr Penerapan Blok SE-NET Pada Deep Learning Inceptionv3 untuk Meningkatkan Deteksi Penyakit Mpox pada Manusia
title_full_unstemmed Penerapan Blok SE-NET Pada Deep Learning Inceptionv3 untuk Meningkatkan Deteksi Penyakit Mpox pada Manusia
title_short Penerapan Blok SE-NET Pada Deep Learning Inceptionv3 untuk Meningkatkan Deteksi Penyakit Mpox pada Manusia
title_sort penerapan blok se net pada deep learning inceptionv3 untuk meningkatkan deteksi penyakit mpox pada manusia
topic Mpox
MSLD (Monkeypox Skin Lesion Dataset)
CNN (Convolutional Neural Network)
InceptionV3
SE-Net
url https://jtiik.ub.ac.id/index.php/jtiik/article/view/7978
work_keys_str_mv AT mbakharaaliefrachman penerapanbloksenetpadadeeplearninginceptionv3untukmeningkatkandeteksipenyakitmpoxpadamanusia
AT aliyahkurniasih penerapanbloksenetpadadeeplearninginceptionv3untukmeningkatkandeteksipenyakitmpoxpadamanusia
AT andikasundawijaya penerapanbloksenetpadadeeplearninginceptionv3untukmeningkatkandeteksipenyakitmpoxpadamanusia
AT ahlijatinuraminah penerapanbloksenetpadadeeplearninginceptionv3untukmeningkatkandeteksipenyakitmpoxpadamanusia