Summary: | One of Courcelle's celebrated results states that if C is a class of graphs
of bounded tree-width, then model-checking for monadic second order logic
(MSO_2) is fixed-parameter tractable (fpt) on C by linear time parameterized
algorithms, where the parameter is the tree-width plus the size of the formula.
An immediate question is whether this is best possible or whether the result
can be extended to classes of unbounded tree-width. In this paper we show that
in terms of tree-width, the theorem cannot be extended much further. More
specifically, we show that if C is a class of graphs which is closed under
colourings and satisfies certain constructibility conditions and is such that
the tree-width of C is not bounded by \log^{84} n then MSO_2-model checking is
not fpt unless SAT can be solved in sub-exponential time. If the tree-width of
C is not poly-logarithmically bounded, then MSO_2-model checking is not fpt
unless all problems in the polynomial-time hierarchy can be solved in
sub-exponential time.
|