Volume nucleation rates for homogeneous freezing in supercooled water microdroplets: results from a combined experimental and modelling approach
Temperature-dependent volume nucleation rate coefficients for supercooled water droplets, <i>J<sub>V</sub>(T</i>), are derived from infrared extinction measurements in a cryogenic laminar aerosol flow tube using a microphysical model. The model...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2010-08-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | http://www.atmos-chem-phys.net/10/7945/2010/acp-10-7945-2010.pdf |
_version_ | 1818474729381560320 |
---|---|
author | M. E. Earle T. Kuhn A. F. Khalizov J. J. Sloan |
author_facet | M. E. Earle T. Kuhn A. F. Khalizov J. J. Sloan |
author_sort | M. E. Earle |
collection | DOAJ |
description | Temperature-dependent volume nucleation rate coefficients for supercooled water droplets, <i>J<sub>V</sub>(T</i>), are derived from infrared extinction measurements in a cryogenic laminar aerosol flow tube using a microphysical model. The model inverts water and ice aerosol size distributions retrieved from experimental extinction spectra by considering the evolution of a measured initial droplet distribution via homogeneous nucleation and the exchange of vapour-phase water along a well-defined temperature profile. Experiment and model results are reported for supercooled water droplets with mean radii of 1.0, 1.7, and 2.9 μm. Values of mass accommodation coefficients for evaporation of water droplets and vapour deposition on ice particles are also determined from the model simulations. The coefficient for ice deposition was found to be 0.031 ± 0.001, while that for water evaporation was 0.054 ± 0.012. Results are considered in terms of the applicability of classical nucleation theory to the freezing of micrometre-sized droplets in cirrus clouds, with implications for the parameterization of homogeneous ice nucleation in numerical models. |
first_indexed | 2024-04-14T04:41:02Z |
format | Article |
id | doaj.art-9bfda5e5e7784875a5afee6d20f24b3c |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-04-14T04:41:02Z |
publishDate | 2010-08-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-9bfda5e5e7784875a5afee6d20f24b3c2022-12-22T02:11:40ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242010-08-0110167945796110.5194/acp-10-7945-2010Volume nucleation rates for homogeneous freezing in supercooled water microdroplets: results from a combined experimental and modelling approachM. E. EarleT. KuhnA. F. KhalizovJ. J. SloanTemperature-dependent volume nucleation rate coefficients for supercooled water droplets, <i>J<sub>V</sub>(T</i>), are derived from infrared extinction measurements in a cryogenic laminar aerosol flow tube using a microphysical model. The model inverts water and ice aerosol size distributions retrieved from experimental extinction spectra by considering the evolution of a measured initial droplet distribution via homogeneous nucleation and the exchange of vapour-phase water along a well-defined temperature profile. Experiment and model results are reported for supercooled water droplets with mean radii of 1.0, 1.7, and 2.9 μm. Values of mass accommodation coefficients for evaporation of water droplets and vapour deposition on ice particles are also determined from the model simulations. The coefficient for ice deposition was found to be 0.031 ± 0.001, while that for water evaporation was 0.054 ± 0.012. Results are considered in terms of the applicability of classical nucleation theory to the freezing of micrometre-sized droplets in cirrus clouds, with implications for the parameterization of homogeneous ice nucleation in numerical models.http://www.atmos-chem-phys.net/10/7945/2010/acp-10-7945-2010.pdf |
spellingShingle | M. E. Earle T. Kuhn A. F. Khalizov J. J. Sloan Volume nucleation rates for homogeneous freezing in supercooled water microdroplets: results from a combined experimental and modelling approach Atmospheric Chemistry and Physics |
title | Volume nucleation rates for homogeneous freezing in supercooled water microdroplets: results from a combined experimental and modelling approach |
title_full | Volume nucleation rates for homogeneous freezing in supercooled water microdroplets: results from a combined experimental and modelling approach |
title_fullStr | Volume nucleation rates for homogeneous freezing in supercooled water microdroplets: results from a combined experimental and modelling approach |
title_full_unstemmed | Volume nucleation rates for homogeneous freezing in supercooled water microdroplets: results from a combined experimental and modelling approach |
title_short | Volume nucleation rates for homogeneous freezing in supercooled water microdroplets: results from a combined experimental and modelling approach |
title_sort | volume nucleation rates for homogeneous freezing in supercooled water microdroplets results from a combined experimental and modelling approach |
url | http://www.atmos-chem-phys.net/10/7945/2010/acp-10-7945-2010.pdf |
work_keys_str_mv | AT meearle volumenucleationratesforhomogeneousfreezinginsupercooledwatermicrodropletsresultsfromacombinedexperimentalandmodellingapproach AT tkuhn volumenucleationratesforhomogeneousfreezinginsupercooledwatermicrodropletsresultsfromacombinedexperimentalandmodellingapproach AT afkhalizov volumenucleationratesforhomogeneousfreezinginsupercooledwatermicrodropletsresultsfromacombinedexperimentalandmodellingapproach AT jjsloan volumenucleationratesforhomogeneousfreezinginsupercooledwatermicrodropletsresultsfromacombinedexperimentalandmodellingapproach |