Combined modelling and miniaturised characterisation of high-temperature forging in a nickel-based superalloy

Continuum models and miniaturised experiments are used to elucidate the high-temperature forgeability of the Ni-based superalloy Inconel 903. Uniaxial compression high temperature tests allow the derivation of an apparent activation energy and the strain rate sensitivity of the deformation process,...

Full description

Bibliographic Details
Main Authors: E. Alabort, R.C. Reed, D. Barba
Format: Article
Language:English
Published: Elsevier 2018-12-01
Series:Materials & Design
Online Access:http://www.sciencedirect.com/science/article/pii/S0264127518307500
Description
Summary:Continuum models and miniaturised experiments are used to elucidate the high-temperature forgeability of the Ni-based superalloy Inconel 903. Uniaxial compression high temperature tests allow the derivation of an apparent activation energy and the strain rate sensitivity of the deformation process, and to propose a unified constitutive model that captures the underlying physics of deformation. Metallographic analysis is then used to elucidate changes in microstructure which arise during the deformation process; microstructure evolution models which define the changes in grain size and recrystallisation during high temperature compression are proposed. Miniaturised forging experiments in double-cone specimens validate the modelling approach under relevant forging conditions at different temperatures and deformation rates. Finally, the deformation behaviour of this material in an industrially relevant manufacturing scenario – the forging process of a turbine disc – is studied numerically. Keywords: Superalloys, Forging, Process modelling, Continuum plasticity, Turbine discs
ISSN:0264-1275