Summary: | Abstract We derive the latest constraints on various simplified models of natural SUSY with light higgsinos, stops and gluinos, using a detailed and comprehensive reinterpretation of the most recent 13 TeV ATLAS and CMS searches with ∼ 15 fb−1 of data. We discuss the implications of these constraints for fine-tuning of the electroweak scale. While the most “vanilla” version of SUSY (the MSSM with R-parity and flavor-degenerate sfermions) with 10% fine-tuning is ruled out by the current constraints, models with decoupled valence squarks or reduced missing energy can still be fully natural. However, in all of these models, the mediation scale must be extremely low (<100 TeV). We conclude by considering the prospects for the high-luminosity LHC era, where we expect the current limits on particle masses to improve by up to ∼ 1 TeV, and discuss further model-building directions for natural SUSY that are motivated by this work.
|