SEMANTIC SEGMENTATION OF INDOOR POINT CLOUDS USING CONVOLUTIONAL NEURAL NETWORK

As Building Information Modelling (BIM) thrives, geometry becomes no longer sufficient; an ever increasing variety of semantic information is needed to express an indoor model adequately. On the other hand, for the existing buildings, automatically generating semantically enriched BIM from point clo...

Full description

Bibliographic Details
Main Authors: K. Babacan, L. Chen, G. Sohn
Format: Article
Language:English
Published: Copernicus Publications 2017-11-01
Series:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-4-W4/101/2017/isprs-annals-IV-4-W4-101-2017.pdf
Description
Summary:As Building Information Modelling (BIM) thrives, geometry becomes no longer sufficient; an ever increasing variety of semantic information is needed to express an indoor model adequately. On the other hand, for the existing buildings, automatically generating semantically enriched BIM from point cloud data is in its infancy. The previous research to enhance the semantic content rely on frameworks in which some specific rules and/or features that are hand coded by specialists. These methods immanently lack generalization and easily break in different circumstances. On this account, a generalized framework is urgently needed to automatically and accurately generate semantic information. Therefore we propose to employ deep learning techniques for the semantic segmentation of point clouds into meaningful parts. More specifically, we build a volumetric data representation in order to efficiently generate the high number of training samples needed to initiate a convolutional neural network architecture. The feedforward propagation is used in such a way to perform the classification in voxel level for achieving semantic segmentation. The method is tested both for a mobile laser scanner point cloud, and a larger scale synthetically generated data. We also demonstrate a case study, in which our method can be effectively used to leverage the extraction of planar surfaces in challenging cluttered indoor environments.
ISSN:2194-9042
2194-9050