Some results on simple complete ideals having one characteristic pair

<p>Let <em>α</em> be a regular local two-dimensional ring, and let<span style="text-decoration: underline;"> </span><em><span style="text-decoration: underline;">m </span>= (x, y) </em>be its maximal ideal. Let <em>m >...

Full description

Bibliographic Details
Main Authors: Silvio Greco, Karlheinz Kiyek
Format: Article
Language:English
Published: Università degli Studi di Catania 2003-05-01
Series:Le Matematiche
Subjects:
Online Access:http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/178
_version_ 1818855474676629504
author Silvio Greco
Karlheinz Kiyek
author_facet Silvio Greco
Karlheinz Kiyek
author_sort Silvio Greco
collection DOAJ
description <p>Let <em>α</em> be a regular local two-dimensional ring, and let<span style="text-decoration: underline;"> </span><em><span style="text-decoration: underline;">m </span>= (x, y) </em>be its maximal ideal. Let <em>m > n > 1</em> be coprime integers, and let<span style="text-decoration: underline;"><em> p</em></span> be the integral closure of the ideal<em> (x^m , y^n )</em>. Then<span style="text-decoration: underline;"> <em>p</em></span> is a simple complete <span style="text-decoration: underline;"><em>m</em></span>-primary ideal, and its value semigroup is generated by <em>m, n</em>.</p><p>We construct a minimal system of generators <em>{z_0 , . . . , z_n }</em> of <span style="text-decoration: underline;"><em>p</em></span>, and from this we get a minimal system of generators of the polar ideal <span style="text-decoration: underline;"><em>p'</em></span> of<span style="text-decoration: underline;"> <em>p</em></span>, consisting of<em> n = θ</em> elements. In particular, we show that <span style="text-decoration: underline;"><em>p</em></span> and <span style="text-decoration: underline;"><em>p'</em></span> are monomial ideals. When <em>α = κ[ [ x, y ] ]</em>, a ring of formal power series over an algebraically closed field <em>κ</em> of characteristic zero, this implies the existence of some relevant property.</p>
first_indexed 2024-12-19T08:09:11Z
format Article
id doaj.art-9c31bc6ed2ee4b0b99dd077fa5750adf
institution Directory Open Access Journal
issn 0373-3505
2037-5298
language English
last_indexed 2024-12-19T08:09:11Z
publishDate 2003-05-01
publisher Università degli Studi di Catania
record_format Article
series Le Matematiche
spelling doaj.art-9c31bc6ed2ee4b0b99dd077fa5750adf2022-12-21T20:29:40ZengUniversità degli Studi di CataniaLe Matematiche0373-35052037-52982003-05-01581333156Some results on simple complete ideals having one characteristic pairSilvio GrecoKarlheinz Kiyek<p>Let <em>α</em> be a regular local two-dimensional ring, and let<span style="text-decoration: underline;"> </span><em><span style="text-decoration: underline;">m </span>= (x, y) </em>be its maximal ideal. Let <em>m > n > 1</em> be coprime integers, and let<span style="text-decoration: underline;"><em> p</em></span> be the integral closure of the ideal<em> (x^m , y^n )</em>. Then<span style="text-decoration: underline;"> <em>p</em></span> is a simple complete <span style="text-decoration: underline;"><em>m</em></span>-primary ideal, and its value semigroup is generated by <em>m, n</em>.</p><p>We construct a minimal system of generators <em>{z_0 , . . . , z_n }</em> of <span style="text-decoration: underline;"><em>p</em></span>, and from this we get a minimal system of generators of the polar ideal <span style="text-decoration: underline;"><em>p'</em></span> of<span style="text-decoration: underline;"> <em>p</em></span>, consisting of<em> n = θ</em> elements. In particular, we show that <span style="text-decoration: underline;"><em>p</em></span> and <span style="text-decoration: underline;"><em>p'</em></span> are monomial ideals. When <em>α = κ[ [ x, y ] ]</em>, a ring of formal power series over an algebraically closed field <em>κ</em> of characteristic zero, this implies the existence of some relevant property.</p>http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/178Simple complete idealsPolar idealValue semigroupTwo- dimensional regular local ringsValuation associated to a simple idealMinimal system of generatorsMonomial ideals
spellingShingle Silvio Greco
Karlheinz Kiyek
Some results on simple complete ideals having one characteristic pair
Le Matematiche
Simple complete ideals
Polar ideal
Value semigroup
Two- dimensional regular local rings
Valuation associated to a simple ideal
Minimal system of generators
Monomial ideals
title Some results on simple complete ideals having one characteristic pair
title_full Some results on simple complete ideals having one characteristic pair
title_fullStr Some results on simple complete ideals having one characteristic pair
title_full_unstemmed Some results on simple complete ideals having one characteristic pair
title_short Some results on simple complete ideals having one characteristic pair
title_sort some results on simple complete ideals having one characteristic pair
topic Simple complete ideals
Polar ideal
Value semigroup
Two- dimensional regular local rings
Valuation associated to a simple ideal
Minimal system of generators
Monomial ideals
url http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/178
work_keys_str_mv AT silviogreco someresultsonsimplecompleteidealshavingonecharacteristicpair
AT karlheinzkiyek someresultsonsimplecompleteidealshavingonecharacteristicpair