Alignments, crossings, cycles, inversions, and weak Bruhat order in permutation tableaux of type $B$

Alignments, crossings and inversions of signed permutations are realized in the corresponding permutation tableaux of type $B$, and the cycles of signed permutations are understood in the corresponding bare tableaux of type $B$. We find the relation between the number of alignments, crossings and ot...

Full description

Bibliographic Details
Main Authors: Soojin Cho, Kyoungsuk Park
Format: Article
Language:English
Published: Discrete Mathematics & Theoretical Computer Science 2015-01-01
Series:Discrete Mathematics & Theoretical Computer Science
Subjects:
Online Access:https://dmtcs.episciences.org/2484/pdf
Description
Summary:Alignments, crossings and inversions of signed permutations are realized in the corresponding permutation tableaux of type $B$, and the cycles of signed permutations are understood in the corresponding bare tableaux of type $B$. We find the relation between the number of alignments, crossings and other statistics of signed permutations, and also characterize the covering relation in weak Bruhat order on Coxeter system of type $B$ in terms of permutation tableaux of type $B$.
ISSN:1365-8050