Zn‐doped MnOx nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors
Abstract MnOx-based nanomaterials are promising large-scale electrochemical energy storage devices due to their high specific capacity, low toxicity, and low cost. However, their slow diffusion kinetics is still challenging, restricting practical applications. Here, a one-pot and straightforward met...
Principais autores: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Artigo |
Idioma: | English |
Publicado em: |
Springer
2023-12-01
|
coleção: | Discover Nano |
Assuntos: | |
Acesso em linha: | https://doi.org/10.1186/s11671-023-03933-2 |
_version_ | 1827590361016434688 |
---|---|
author | Geyse A. C. Ribeiro Scarllett L. S. de Lima Karolinne E. R. Santos Jhonatam P. Mendonça Pedro Macena Emanuel C. Pessanha Thallis C. Cordeiro Jules Gardener Guilhermo Solórzano Jéssica E. S. Fonsaca Sergio H. Domingues Clenilton C. dos Santos André H. B. Dourado Auro A. Tanaka Anderson G. M. da Silva Marco A. S. Garcia |
author_facet | Geyse A. C. Ribeiro Scarllett L. S. de Lima Karolinne E. R. Santos Jhonatam P. Mendonça Pedro Macena Emanuel C. Pessanha Thallis C. Cordeiro Jules Gardener Guilhermo Solórzano Jéssica E. S. Fonsaca Sergio H. Domingues Clenilton C. dos Santos André H. B. Dourado Auro A. Tanaka Anderson G. M. da Silva Marco A. S. Garcia |
author_sort | Geyse A. C. Ribeiro |
collection | DOAJ |
description | Abstract MnOx-based nanomaterials are promising large-scale electrochemical energy storage devices due to their high specific capacity, low toxicity, and low cost. However, their slow diffusion kinetics is still challenging, restricting practical applications. Here, a one-pot and straightforward method was reported to produce Zn-doped MnOx nanowires with abundant defects and tunable small cross-sections, exhibiting an outstanding specific capacitance. More specifically, based on a facile hydrothermal strategy, zinc sites could be uniformly dispersed in the α-MnOx nanowires structure as a function of composition (0.3, 2.1, 4.3, and 7.6 wt.% Zn). Such a process avoided the formation of different crystalline phases during the synthesis. The reproducible method afforded uniform nanowires, in which the size of cross-sections decreased with the increase of Zn composition. Surprisingly, we found a volcano-type relationship between the storage performance and the Zn loading. In this case, we demonstrated that the highest performance material could be achieved by incorporating 2.1 wt.% Zn, exhibiting a remarkable specific capacitance of 1082.2 F.g−1 at a charge/discharge current density of 1.0 A g−1 in a 2.0 mol L−1 KOH electrolyte. The optimized material also afforded improved results for hybrid supercapacitors. Thus, the results presented herein shed new insights into preparing defective and controlled nanomaterials by a simple one-step method for energy storage applications. |
first_indexed | 2024-03-09T01:15:47Z |
format | Article |
id | doaj.art-9c42e9e1f3e846b5b0bc9ee871506c31 |
institution | Directory Open Access Journal |
issn | 2731-9229 |
language | English |
last_indexed | 2024-03-09T01:15:47Z |
publishDate | 2023-12-01 |
publisher | Springer |
record_format | Article |
series | Discover Nano |
spelling | doaj.art-9c42e9e1f3e846b5b0bc9ee871506c312023-12-10T12:28:54ZengSpringerDiscover Nano2731-92292023-12-0118111610.1186/s11671-023-03933-2Zn‐doped MnOx nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitorsGeyse A. C. Ribeiro0Scarllett L. S. de Lima1Karolinne E. R. Santos2Jhonatam P. Mendonça3Pedro Macena4Emanuel C. Pessanha5Thallis C. Cordeiro6Jules Gardener7Guilhermo Solórzano8Jéssica E. S. Fonsaca9Sergio H. Domingues10Clenilton C. dos Santos11André H. B. Dourado12Auro A. Tanaka13Anderson G. M. da Silva14Marco A. S. Garcia15Departamento de Química, Centro de Ciências Exatas E Tecnologia, Universidade Federal Do Maranhão (UFMA)Departamento de Engenharia Química E de Materiais-DEQM, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio)Departamento de Química, Centro de Ciências Exatas E Tecnologia, Universidade Federal Do Maranhão (UFMA)Departamento de Química, Centro de Ciências Exatas E Tecnologia, Universidade Federal Do Maranhão (UFMA)Departamento de Engenharia Química E de Materiais-DEQM, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio)Departamento de Engenharia Química E de Materiais-DEQM, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio)Centro de Ciências Exatas E Tecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro (UENF)Center for Nanoscale Systems, School of Engineering and Applied Sciences, Harvard UniversityDepartamento de Engenharia Química E de Materiais-DEQM, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio)Mackenzie Institute for Advanced Research in Graphene and Nanotechnologies – MackGraphe, Mackenzie Presbyterian UniversityMackenzie Institute for Advanced Research in Graphene and Nanotechnologies – MackGraphe, Mackenzie Presbyterian UniversityDepartament of Physics, Universidade Federal Do Maranhão (UFMA)São Carlos Institute of Chemistry, Universidade de São Paulo (USP)Departamento de Química, Centro de Ciências Exatas E Tecnologia, Universidade Federal Do Maranhão (UFMA)Departamento de Engenharia Química E de Materiais-DEQM, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio)Departamento de Química, Centro de Ciências Exatas E Tecnologia, Universidade Federal Do Maranhão (UFMA)Abstract MnOx-based nanomaterials are promising large-scale electrochemical energy storage devices due to their high specific capacity, low toxicity, and low cost. However, their slow diffusion kinetics is still challenging, restricting practical applications. Here, a one-pot and straightforward method was reported to produce Zn-doped MnOx nanowires with abundant defects and tunable small cross-sections, exhibiting an outstanding specific capacitance. More specifically, based on a facile hydrothermal strategy, zinc sites could be uniformly dispersed in the α-MnOx nanowires structure as a function of composition (0.3, 2.1, 4.3, and 7.6 wt.% Zn). Such a process avoided the formation of different crystalline phases during the synthesis. The reproducible method afforded uniform nanowires, in which the size of cross-sections decreased with the increase of Zn composition. Surprisingly, we found a volcano-type relationship between the storage performance and the Zn loading. In this case, we demonstrated that the highest performance material could be achieved by incorporating 2.1 wt.% Zn, exhibiting a remarkable specific capacitance of 1082.2 F.g−1 at a charge/discharge current density of 1.0 A g−1 in a 2.0 mol L−1 KOH electrolyte. The optimized material also afforded improved results for hybrid supercapacitors. Thus, the results presented herein shed new insights into preparing defective and controlled nanomaterials by a simple one-step method for energy storage applications.https://doi.org/10.1186/s11671-023-03933-2NanowiresMnO2ZnSupercapacitorsOxygen vacanciesSurface defects |
spellingShingle | Geyse A. C. Ribeiro Scarllett L. S. de Lima Karolinne E. R. Santos Jhonatam P. Mendonça Pedro Macena Emanuel C. Pessanha Thallis C. Cordeiro Jules Gardener Guilhermo Solórzano Jéssica E. S. Fonsaca Sergio H. Domingues Clenilton C. dos Santos André H. B. Dourado Auro A. Tanaka Anderson G. M. da Silva Marco A. S. Garcia Zn‐doped MnOx nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors Discover Nano Nanowires MnO2 Zn Supercapacitors Oxygen vacancies Surface defects |
title | Zn‐doped MnOx nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors |
title_full | Zn‐doped MnOx nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors |
title_fullStr | Zn‐doped MnOx nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors |
title_full_unstemmed | Zn‐doped MnOx nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors |
title_short | Zn‐doped MnOx nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors |
title_sort | zn doped mnox nanowires displaying plentiful crystalline defects and tunable small cross sections for an optimized volcano type performance towards supercapacitors |
topic | Nanowires MnO2 Zn Supercapacitors Oxygen vacancies Surface defects |
url | https://doi.org/10.1186/s11671-023-03933-2 |
work_keys_str_mv | AT geyseacribeiro zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors AT scarllettlsdelima zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors AT karolinneersantos zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors AT jhonatampmendonca zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors AT pedromacena zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors AT emanuelcpessanha zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors AT thallisccordeiro zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors AT julesgardener zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors AT guilhermosolorzano zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors AT jessicaesfonsaca zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors AT sergiohdomingues zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors AT cleniltoncdossantos zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors AT andrehbdourado zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors AT auroatanaka zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors AT andersongmdasilva zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors AT marcoasgarcia zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors |