Zn‐doped MnOx nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors

Abstract MnOx-based nanomaterials are promising large-scale electrochemical energy storage devices due to their high specific capacity, low toxicity, and low cost. However, their slow diffusion kinetics is still challenging, restricting practical applications. Here, a one-pot and straightforward met...

ver descrição completa

Detalhes bibliográficos
Principais autores: Geyse A. C. Ribeiro, Scarllett L. S. de Lima, Karolinne E. R. Santos, Jhonatam P. Mendonça, Pedro Macena, Emanuel C. Pessanha, Thallis C. Cordeiro, Jules Gardener, Guilhermo Solórzano, Jéssica E. S. Fonsaca, Sergio H. Domingues, Clenilton C. dos Santos, André H. B. Dourado, Auro A. Tanaka, Anderson G. M. da Silva, Marco A. S. Garcia
Formato: Artigo
Idioma:English
Publicado em: Springer 2023-12-01
coleção:Discover Nano
Assuntos:
Acesso em linha:https://doi.org/10.1186/s11671-023-03933-2
_version_ 1827590361016434688
author Geyse A. C. Ribeiro
Scarllett L. S. de Lima
Karolinne E. R. Santos
Jhonatam P. Mendonça
Pedro Macena
Emanuel C. Pessanha
Thallis C. Cordeiro
Jules Gardener
Guilhermo Solórzano
Jéssica E. S. Fonsaca
Sergio H. Domingues
Clenilton C. dos Santos
André H. B. Dourado
Auro A. Tanaka
Anderson G. M. da Silva
Marco A. S. Garcia
author_facet Geyse A. C. Ribeiro
Scarllett L. S. de Lima
Karolinne E. R. Santos
Jhonatam P. Mendonça
Pedro Macena
Emanuel C. Pessanha
Thallis C. Cordeiro
Jules Gardener
Guilhermo Solórzano
Jéssica E. S. Fonsaca
Sergio H. Domingues
Clenilton C. dos Santos
André H. B. Dourado
Auro A. Tanaka
Anderson G. M. da Silva
Marco A. S. Garcia
author_sort Geyse A. C. Ribeiro
collection DOAJ
description Abstract MnOx-based nanomaterials are promising large-scale electrochemical energy storage devices due to their high specific capacity, low toxicity, and low cost. However, their slow diffusion kinetics is still challenging, restricting practical applications. Here, a one-pot and straightforward method was reported to produce Zn-doped MnOx nanowires with abundant defects and tunable small cross-sections, exhibiting an outstanding specific capacitance. More specifically, based on a facile hydrothermal strategy, zinc sites could be uniformly dispersed in the α-MnOx nanowires structure as a function of composition (0.3, 2.1, 4.3, and 7.6 wt.% Zn). Such a process avoided the formation of different crystalline phases during the synthesis. The reproducible method afforded uniform nanowires, in which the size of cross-sections decreased with the increase of Zn composition. Surprisingly, we found a volcano-type relationship between the storage performance and the Zn loading. In this case, we demonstrated that the highest performance material could be achieved by incorporating 2.1 wt.% Zn, exhibiting a remarkable specific capacitance of 1082.2 F.g−1 at a charge/discharge current density of 1.0 A g−1 in a 2.0 mol L−1 KOH electrolyte. The optimized material also afforded improved results for hybrid supercapacitors. Thus, the results presented herein shed new insights into preparing defective and controlled nanomaterials by a simple one-step method for energy storage applications.
first_indexed 2024-03-09T01:15:47Z
format Article
id doaj.art-9c42e9e1f3e846b5b0bc9ee871506c31
institution Directory Open Access Journal
issn 2731-9229
language English
last_indexed 2024-03-09T01:15:47Z
publishDate 2023-12-01
publisher Springer
record_format Article
series Discover Nano
spelling doaj.art-9c42e9e1f3e846b5b0bc9ee871506c312023-12-10T12:28:54ZengSpringerDiscover Nano2731-92292023-12-0118111610.1186/s11671-023-03933-2Zn‐doped MnOx nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitorsGeyse A. C. Ribeiro0Scarllett L. S. de Lima1Karolinne E. R. Santos2Jhonatam P. Mendonça3Pedro Macena4Emanuel C. Pessanha5Thallis C. Cordeiro6Jules Gardener7Guilhermo Solórzano8Jéssica E. S. Fonsaca9Sergio H. Domingues10Clenilton C. dos Santos11André H. B. Dourado12Auro A. Tanaka13Anderson G. M. da Silva14Marco A. S. Garcia15Departamento de Química, Centro de Ciências Exatas E Tecnologia, Universidade Federal Do Maranhão (UFMA)Departamento de Engenharia Química E de Materiais-DEQM, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio)Departamento de Química, Centro de Ciências Exatas E Tecnologia, Universidade Federal Do Maranhão (UFMA)Departamento de Química, Centro de Ciências Exatas E Tecnologia, Universidade Federal Do Maranhão (UFMA)Departamento de Engenharia Química E de Materiais-DEQM, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio)Departamento de Engenharia Química E de Materiais-DEQM, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio)Centro de Ciências Exatas E Tecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro (UENF)Center for Nanoscale Systems, School of Engineering and Applied Sciences, Harvard UniversityDepartamento de Engenharia Química E de Materiais-DEQM, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio)Mackenzie Institute for Advanced Research in Graphene and Nanotechnologies – MackGraphe, Mackenzie Presbyterian UniversityMackenzie Institute for Advanced Research in Graphene and Nanotechnologies – MackGraphe, Mackenzie Presbyterian UniversityDepartament of Physics, Universidade Federal Do Maranhão (UFMA)São Carlos Institute of Chemistry, Universidade de São Paulo (USP)Departamento de Química, Centro de Ciências Exatas E Tecnologia, Universidade Federal Do Maranhão (UFMA)Departamento de Engenharia Química E de Materiais-DEQM, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio)Departamento de Química, Centro de Ciências Exatas E Tecnologia, Universidade Federal Do Maranhão (UFMA)Abstract MnOx-based nanomaterials are promising large-scale electrochemical energy storage devices due to their high specific capacity, low toxicity, and low cost. However, their slow diffusion kinetics is still challenging, restricting practical applications. Here, a one-pot and straightforward method was reported to produce Zn-doped MnOx nanowires with abundant defects and tunable small cross-sections, exhibiting an outstanding specific capacitance. More specifically, based on a facile hydrothermal strategy, zinc sites could be uniformly dispersed in the α-MnOx nanowires structure as a function of composition (0.3, 2.1, 4.3, and 7.6 wt.% Zn). Such a process avoided the formation of different crystalline phases during the synthesis. The reproducible method afforded uniform nanowires, in which the size of cross-sections decreased with the increase of Zn composition. Surprisingly, we found a volcano-type relationship between the storage performance and the Zn loading. In this case, we demonstrated that the highest performance material could be achieved by incorporating 2.1 wt.% Zn, exhibiting a remarkable specific capacitance of 1082.2 F.g−1 at a charge/discharge current density of 1.0 A g−1 in a 2.0 mol L−1 KOH electrolyte. The optimized material also afforded improved results for hybrid supercapacitors. Thus, the results presented herein shed new insights into preparing defective and controlled nanomaterials by a simple one-step method for energy storage applications.https://doi.org/10.1186/s11671-023-03933-2NanowiresMnO2ZnSupercapacitorsOxygen vacanciesSurface defects
spellingShingle Geyse A. C. Ribeiro
Scarllett L. S. de Lima
Karolinne E. R. Santos
Jhonatam P. Mendonça
Pedro Macena
Emanuel C. Pessanha
Thallis C. Cordeiro
Jules Gardener
Guilhermo Solórzano
Jéssica E. S. Fonsaca
Sergio H. Domingues
Clenilton C. dos Santos
André H. B. Dourado
Auro A. Tanaka
Anderson G. M. da Silva
Marco A. S. Garcia
Zn‐doped MnOx nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors
Discover Nano
Nanowires
MnO2
Zn
Supercapacitors
Oxygen vacancies
Surface defects
title Zn‐doped MnOx nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors
title_full Zn‐doped MnOx nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors
title_fullStr Zn‐doped MnOx nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors
title_full_unstemmed Zn‐doped MnOx nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors
title_short Zn‐doped MnOx nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors
title_sort zn doped mnox nanowires displaying plentiful crystalline defects and tunable small cross sections for an optimized volcano type performance towards supercapacitors
topic Nanowires
MnO2
Zn
Supercapacitors
Oxygen vacancies
Surface defects
url https://doi.org/10.1186/s11671-023-03933-2
work_keys_str_mv AT geyseacribeiro zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors
AT scarllettlsdelima zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors
AT karolinneersantos zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors
AT jhonatampmendonca zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors
AT pedromacena zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors
AT emanuelcpessanha zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors
AT thallisccordeiro zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors
AT julesgardener zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors
AT guilhermosolorzano zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors
AT jessicaesfonsaca zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors
AT sergiohdomingues zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors
AT cleniltoncdossantos zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors
AT andrehbdourado zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors
AT auroatanaka zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors
AT andersongmdasilva zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors
AT marcoasgarcia zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors