Observing flow of He II with unsupervised machine learning
Abstract Time dependent observations of point-to-point correlations of the velocity vector field (structure functions) are necessary to model and understand fluid flow around complex objects. Using thermal gradients, we observed fluid flow by recording fluorescence of $${\text{He}}_{2}^{*}$$ He 2 ∗...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2022-11-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-022-21906-w |
Summary: | Abstract Time dependent observations of point-to-point correlations of the velocity vector field (structure functions) are necessary to model and understand fluid flow around complex objects. Using thermal gradients, we observed fluid flow by recording fluorescence of $${\text{He}}_{2}^{*}$$ He 2 ∗ excimers produced by neutron capture throughout a ~ cm3 volume. Because the photon emitted by an excited excimer is unlikely to be recorded by the camera, the techniques of particle tracking (PTV) and particle imaging (PIV) velocimetry cannot be applied to extract information from the fluorescence of individual excimers. Therefore, we applied an unsupervised machine learning algorithm to identify light from ensembles of excimers (clusters) and then tracked the centroids of the clusters using a particle displacement determination algorithm developed for PTV. |
---|---|
ISSN: | 2045-2322 |