An Interference-Free Voltammetric Method for the Detection of Sulfur Dioxide in Wine Based on a Boron-Doped Diamond Electrode and Reaction Electrochemistry
This paper describes a new, simple, and highly selective analytical technique for the detection of sulfur dioxide in wine, as a real sample with a relatively complicated matrix. The detection of the above analyte was based on the electrogeneration of iodine from iodide on a boron-doped diamond elect...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-08-01
|
Series: | International Journal of Molecular Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/1422-0067/24/16/12875 |
Summary: | This paper describes a new, simple, and highly selective analytical technique for the detection of sulfur dioxide in wine, as a real sample with a relatively complicated matrix. The detection of the above analyte was based on the electrogeneration of iodine from iodide on a boron-doped diamond electrode, without modifications, in the presence of 0.1 mol dm<sup>−3</sup> HClO<sub>4</sub> as a supporting electrolyte. The electrogenerated iodine reacted with sulfur dioxide, forming iodide ions and sulfuric acid (i.e., a Bunsen reaction). The product of this reaction, the iodide ion, diffused back to the surface of the boron-doped diamond electrode and oxidized itself again. This chemical redox cycling enhanced the voltammetric response of the boron-doped diamond electrode. The selectivity of the determination was assured using NaOH and formaldehyde during sample preparation, and a blank was also measured and taken into account. The detection limit was estimated to be 10<sup>−6</sup>–10<sup>−7</sup> mol dm<sup>−3</sup>. However, the content of sulfur dioxide in wine is significantly higher, which can lead to more accurate and reliable results. |
---|---|
ISSN: | 1661-6596 1422-0067 |