On existence and uniqueness of positive solutions to a class of fractional boundary value problems

<p>Abstract</p> <p>The purpose of this paper is to investigate the existence and uniqueness of positive solutions for the following fractional boundary value problem</p> <p><display-formula><m:math name="1687-2770-2011-25-i1" xmlns:m="http://www....

Full description

Bibliographic Details
Main Authors: Caballero J, Harjani J, Sadarangani K
Format: Article
Language:English
Published: SpringerOpen 2011-01-01
Series:Boundary Value Problems
Subjects:
Online Access:http://www.boundaryvalueproblems.com/content/2011/1/25
Description
Summary:<p>Abstract</p> <p>The purpose of this paper is to investigate the existence and uniqueness of positive solutions for the following fractional boundary value problem</p> <p><display-formula><m:math name="1687-2770-2011-25-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:mrow> <m:mtable equalrows="false" columnlines="none none none none none none none none none none none none none none none none none none none" equalcolumns="false" class="array"> <m:mtr> <m:mtd class="array" columnalign="center"> <m:msubsup> <m:mrow> <m:mi>D</m:mi> </m:mrow> <m:mrow> <m:msup> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mo class="MathClass-bin">+</m:mo> </m:mrow> </m:msup> </m:mrow> <m:mrow> <m:mi>&#945;</m:mi> </m:mrow> </m:msubsup> <m:mi>u</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-bin">+</m:mo> <m:mi>f</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>t</m:mi> <m:mo class="MathClass-punc">,</m:mo> <m:mi>u</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-rel">=</m:mo> <m:mn>0</m:mn> <m:mo class="MathClass-punc">,</m:mo> <m:mspace width="1em" class="quad"/> <m:mn>0</m:mn> <m:mo class="MathClass-rel">&lt;</m:mo> <m:mi>t</m:mi> <m:mo class="MathClass-rel">&lt;</m:mo> <m:mn>1</m:mn> <m:mo class="MathClass-punc">,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd class="array" columnalign="center"> <m:mi>u</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-rel">=</m:mo> <m:mi>u</m:mi> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-rel">=</m:mo> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>&#8242;</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo class="MathClass-open">(</m:mo> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mo class="MathClass-close">)</m:mo> </m:mrow> <m:mo class="MathClass-rel">=</m:mo> <m:mn>0</m:mn> <m:mo class="MathClass-punc">,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd class="array" columnalign="center"/> </m:mtr> </m:mtable> </m:mrow> </m:math> </display-formula></p> <p>where 2 &lt; <it>&#945; </it>&#8804; 3 and <inline-formula><m:math name="1687-2770-2011-25-i2" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:msubsup> <m:mrow> <m:mi>D</m:mi> </m:mrow> <m:mrow> <m:msup> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mo class="MathClass-bin">+</m:mo> </m:mrow> </m:msup> </m:mrow> <m:mrow> <m:mi>&#945;</m:mi> </m:mrow> </m:msubsup> </m:math> </inline-formula> is the Riemann-Liouville fractional derivative.</p> <p>Our analysis relies on a fixed-point theorem in partially ordered metric spaces. The autonomous case of this problem was studied in the paper [Zhao et al., Abs. Appl. Anal., to appear], but in Zhao et al. (to appear), the question of uniqueness of the solution is not treated.</p> <p>We also present some examples where we compare our results with the ones obtained in Zhao et al. (to appear).</p> <p><b>2010 Mathematics Subject Classification</b>: 34B15</p>
ISSN:1687-2762
1687-2770