Temporal perturbation of ERK dynamics reveals network architecture of FGF2/MAPK signaling
Abstract Stimulation of PC‐12 cells with epidermal (EGF) versus nerve (NGF) growth factors (GFs) biases the distribution between transient and sustained single‐cell ERK activity states, and between proliferation and differentiation fates within a cell population. We report that fibroblast GF (FGF2)...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Springer Nature
2019-11-01
|
Series: | Molecular Systems Biology |
Subjects: | |
Online Access: | https://doi.org/10.15252/msb.20198947 |
Summary: | Abstract Stimulation of PC‐12 cells with epidermal (EGF) versus nerve (NGF) growth factors (GFs) biases the distribution between transient and sustained single‐cell ERK activity states, and between proliferation and differentiation fates within a cell population. We report that fibroblast GF (FGF2) evokes a distinct behavior that consists of a gradually changing population distribution of transient/sustained ERK signaling states in response to increasing inputs in a dose response. Temporally controlled GF perturbations of MAPK signaling dynamics applied using microfluidics reveal that this wider mix of ERK states emerges through the combination of an intracellular feedback, and competition of FGF2 binding to FGF receptors (FGFRs) and heparan sulfate proteoglycan (HSPG) co‐receptors. We show that the latter experimental modality is instructive for model selection using a Bayesian parameter inference. Our results provide novel insights into how different receptor tyrosine kinase (RTK) systems differentially wire the MAPK network to fine‐tune fate decisions at the cell population level. |
---|---|
ISSN: | 1744-4292 |