Habitat Potential Mapping of Marten (Martes flavigula) and Leopard Cat (Prionailurus bengalensis) in South Korea Using Artificial Neural Network Machine Learning

This study developed habitat potential maps for the marten (Martes flavigula) and leopard cat (Prionailurus bengalensis) in South Korea. Both species are registered on the Red List of the International Union for Conservation of Nature, which means that they need to be managed properly. Various facto...

Full description

Bibliographic Details
Main Authors: Saro Lee, Sunmin Lee, Wonkyong Song, Moung-Jin Lee
Format: Article
Language:English
Published: MDPI AG 2017-09-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/7/9/912
Description
Summary:This study developed habitat potential maps for the marten (Martes flavigula) and leopard cat (Prionailurus bengalensis) in South Korea. Both species are registered on the Red List of the International Union for Conservation of Nature, which means that they need to be managed properly. Various factors influencing the habitat distributions of the marten and leopard were identified to create habitat potential maps, including elevation, slope, timber type and age, land cover, and distances from a forest stand, road, or drainage. A spatial database for each species was constructed by preprocessing Geographic Information System (GIS) data, and the spatial relationship between the distribution of leopard cats and environmental factors was analyzed using an artificial neural network (ANN) model. This process used half of the existing habitat location data for the marten and leopard cat for training. Habitat potential maps were then created considering the relationships. Using the remaining half of the habitat location data for each species, the model was validated. The results of the model were relatively successful, predicting approximately 85% for the marten and approximately 87% for the leopard cat. Therefore, the habitat potential maps can be used for monitoring the habitats of both species and managing these habitats effectively.
ISSN:2076-3417