A Phenotyping Algorithm to Identify People With HIV in Electronic Health Record Data (HIV-Phen): Development and Evaluation Study
BackgroundIdentification of people with HIV from electronic health record (EHR) data is an essential first step in the study of important HIV outcomes, such as risk assessment. This task has been historically performed via manual chart review, but the increased availability o...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
JMIR Publications
2021-11-01
|
Series: | JMIR Formative Research |
Online Access: | https://formative.jmir.org/2021/11/e28620 |
_version_ | 1827858827375017984 |
---|---|
author | Sarah B May Thomas P Giordano Assaf Gottlieb |
author_facet | Sarah B May Thomas P Giordano Assaf Gottlieb |
author_sort | Sarah B May |
collection | DOAJ |
description |
BackgroundIdentification of people with HIV from electronic health record (EHR) data is an essential first step in the study of important HIV outcomes, such as risk assessment. This task has been historically performed via manual chart review, but the increased availability of large clinical data sets has led to the emergence of phenotyping algorithms to automate this process. Existing algorithms for identifying people with HIV rely on a combination of International Classification of Disease codes and laboratory tests or closely mimic clinical testing guidelines for HIV diagnosis. However, we found that existing algorithms in the literature missed a significant proportion of people with HIV in our data.
ObjectiveThe aim of this study is to develop and evaluate HIV-Phen, an updated criteria-based HIV phenotyping algorithm.
MethodsWe developed an algorithm using HIV-specific laboratory tests and medications and compared it with previously published algorithms in national and local data sets to identify cohorts of people with HIV. Cohort demographics were compared with those reported in the national and local surveillance data. Chart reviews were performed on a subsample of patients from the local database to calculate the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of the algorithm.
ResultsOur new algorithm identified substantially more people with HIV in both national (up to an 85.75% increase) and local (up to an 83.20% increase) EHR databases than the previously published algorithms. The demographic characteristics of people with HIV identified using our algorithm were similar to those reported in national and local HIV surveillance data. Our algorithm demonstrated improved sensitivity over existing algorithms (98% vs 56%-92%) while maintaining a similar overall accuracy (96% vs 80%-96%).
ConclusionsWe developed and evaluated an updated criteria-based phenotyping algorithm for identifying people with HIV in EHR data that demonstrates improved sensitivity over existing algorithms. |
first_indexed | 2024-03-12T13:00:38Z |
format | Article |
id | doaj.art-9c7821c58c7242b09a7359b0c7534228 |
institution | Directory Open Access Journal |
issn | 2561-326X |
language | English |
last_indexed | 2024-03-12T13:00:38Z |
publishDate | 2021-11-01 |
publisher | JMIR Publications |
record_format | Article |
series | JMIR Formative Research |
spelling | doaj.art-9c7821c58c7242b09a7359b0c75342282023-08-28T19:50:36ZengJMIR PublicationsJMIR Formative Research2561-326X2021-11-01511e2862010.2196/28620A Phenotyping Algorithm to Identify People With HIV in Electronic Health Record Data (HIV-Phen): Development and Evaluation StudySarah B Mayhttps://orcid.org/0000-0003-1489-8053Thomas P Giordanohttps://orcid.org/0000-0002-9346-5530Assaf Gottliebhttps://orcid.org/0000-0003-4904-631X BackgroundIdentification of people with HIV from electronic health record (EHR) data is an essential first step in the study of important HIV outcomes, such as risk assessment. This task has been historically performed via manual chart review, but the increased availability of large clinical data sets has led to the emergence of phenotyping algorithms to automate this process. Existing algorithms for identifying people with HIV rely on a combination of International Classification of Disease codes and laboratory tests or closely mimic clinical testing guidelines for HIV diagnosis. However, we found that existing algorithms in the literature missed a significant proportion of people with HIV in our data. ObjectiveThe aim of this study is to develop and evaluate HIV-Phen, an updated criteria-based HIV phenotyping algorithm. MethodsWe developed an algorithm using HIV-specific laboratory tests and medications and compared it with previously published algorithms in national and local data sets to identify cohorts of people with HIV. Cohort demographics were compared with those reported in the national and local surveillance data. Chart reviews were performed on a subsample of patients from the local database to calculate the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of the algorithm. ResultsOur new algorithm identified substantially more people with HIV in both national (up to an 85.75% increase) and local (up to an 83.20% increase) EHR databases than the previously published algorithms. The demographic characteristics of people with HIV identified using our algorithm were similar to those reported in national and local HIV surveillance data. Our algorithm demonstrated improved sensitivity over existing algorithms (98% vs 56%-92%) while maintaining a similar overall accuracy (96% vs 80%-96%). ConclusionsWe developed and evaluated an updated criteria-based phenotyping algorithm for identifying people with HIV in EHR data that demonstrates improved sensitivity over existing algorithms.https://formative.jmir.org/2021/11/e28620 |
spellingShingle | Sarah B May Thomas P Giordano Assaf Gottlieb A Phenotyping Algorithm to Identify People With HIV in Electronic Health Record Data (HIV-Phen): Development and Evaluation Study JMIR Formative Research |
title | A Phenotyping Algorithm to Identify People With HIV in Electronic Health Record Data (HIV-Phen): Development and Evaluation Study |
title_full | A Phenotyping Algorithm to Identify People With HIV in Electronic Health Record Data (HIV-Phen): Development and Evaluation Study |
title_fullStr | A Phenotyping Algorithm to Identify People With HIV in Electronic Health Record Data (HIV-Phen): Development and Evaluation Study |
title_full_unstemmed | A Phenotyping Algorithm to Identify People With HIV in Electronic Health Record Data (HIV-Phen): Development and Evaluation Study |
title_short | A Phenotyping Algorithm to Identify People With HIV in Electronic Health Record Data (HIV-Phen): Development and Evaluation Study |
title_sort | phenotyping algorithm to identify people with hiv in electronic health record data hiv phen development and evaluation study |
url | https://formative.jmir.org/2021/11/e28620 |
work_keys_str_mv | AT sarahbmay aphenotypingalgorithmtoidentifypeoplewithhivinelectronichealthrecorddatahivphendevelopmentandevaluationstudy AT thomaspgiordano aphenotypingalgorithmtoidentifypeoplewithhivinelectronichealthrecorddatahivphendevelopmentandevaluationstudy AT assafgottlieb aphenotypingalgorithmtoidentifypeoplewithhivinelectronichealthrecorddatahivphendevelopmentandevaluationstudy AT sarahbmay phenotypingalgorithmtoidentifypeoplewithhivinelectronichealthrecorddatahivphendevelopmentandevaluationstudy AT thomaspgiordano phenotypingalgorithmtoidentifypeoplewithhivinelectronichealthrecorddatahivphendevelopmentandevaluationstudy AT assafgottlieb phenotypingalgorithmtoidentifypeoplewithhivinelectronichealthrecorddatahivphendevelopmentandevaluationstudy |