Dissolution of Portlandite in Pure Water: Part 2 Atomistic Kinetic Monte Carlo (KMC) Approach

Portlandite, as a most soluble cement hydration reaction product, affects mechanical and durability properties of cementitious materials. In the present work, an atomistic kinetic Monte Carlo (KMC) upscaling approach is implemented in MATLAB code in order to investigate the dissolution time and morp...

Full description

Bibliographic Details
Main Authors: Mohammadreza Izadifar, Neven Ukrainczyk, Khondakar Mohammad Salah Uddin, Bernhard Middendorf, Eduardus Koenders
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/15/4/1442
_version_ 1797478492561997824
author Mohammadreza Izadifar
Neven Ukrainczyk
Khondakar Mohammad Salah Uddin
Bernhard Middendorf
Eduardus Koenders
author_facet Mohammadreza Izadifar
Neven Ukrainczyk
Khondakar Mohammad Salah Uddin
Bernhard Middendorf
Eduardus Koenders
author_sort Mohammadreza Izadifar
collection DOAJ
description Portlandite, as a most soluble cement hydration reaction product, affects mechanical and durability properties of cementitious materials. In the present work, an atomistic kinetic Monte Carlo (KMC) upscaling approach is implemented in MATLAB code in order to investigate the dissolution time and morphology changes of a hexagonal platelet portlandite crystal. First, the atomistic rate constants of individual Ca dissolution events are computed by a transition state theory equation based on inputs of the computed activation energies (Δ<i>G*</i>) obtained through the metadynamics computational method (Part 1 of paper). Four different facets (100 or <inline-formula><math display="inline"><semantics><mrow><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mn>00</mn></mrow></semantics></math></inline-formula>, 010 or 0<inline-formula><math display="inline"><semantics><mover accent="true"><mn>1</mn><mo>¯</mo></mover></semantics></math></inline-formula>0, <inline-formula><math display="inline"><semantics><mrow><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mn>10</mn></mrow></semantics></math></inline-formula> or <inline-formula><math display="inline"><semantics><mrow><mn>1</mn><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mn>0</mn></mrow></semantics></math></inline-formula>, and 001 or 00<inline-formula><math display="inline"><semantics><mover accent="true"><mn>1</mn><mo>¯</mo></mover></semantics></math></inline-formula>) are considered, resulting in a total of 16 different atomistic event scenarios. Results of the upscaled KMC simulations demonstrate that dissolution process initially takes place from edges, sides, and facets of 010 or 0<inline-formula><math display="inline"><semantics><mover accent="true"><mn>1</mn><mo>¯</mo></mover></semantics></math></inline-formula>0 of the crystal morphology. The steady-state dissolution rate for the most reactive facets (010 or 0<inline-formula><math display="inline"><semantics><mrow><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mn>0</mn></mrow></semantics></math></inline-formula>) was computed to be 1.0443 mol/(s cm<sup>2</sup>); however, 0.0032 mol/(s cm<sup>2</sup>) for <inline-formula><math display="inline"><semantics><mrow><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mn>10</mn></mrow></semantics></math></inline-formula> or <inline-formula><math display="inline"><semantics><mrow><mn>1</mn><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mn>0</mn></mrow></semantics></math></inline-formula>, 2.672 × 10<sup>−7</sup> mol/(s cm<sup>2</sup>) for 001 or 00<inline-formula><math display="inline"><semantics><mover accent="true"><mn>1</mn><mo>¯</mo></mover></semantics></math></inline-formula>, and 0.31 × 10<sup>−16</sup> mol/(s cm<sup>2</sup>) for 100 or <inline-formula><math display="inline"><semantics><mrow><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mn>00</mn></mrow></semantics></math></inline-formula> were represented in a decreasing order for less reactive facets. Obtained upscaled dissolution rates between each facet resulted in a huge (16 orders of magnitude) difference, reflecting the importance of crystallographic orientation of the exposed facets.
first_indexed 2024-03-09T21:32:36Z
format Article
id doaj.art-9c79911d5ed247cd9ce12a937e7511e2
institution Directory Open Access Journal
issn 1996-1944
language English
last_indexed 2024-03-09T21:32:36Z
publishDate 2022-02-01
publisher MDPI AG
record_format Article
series Materials
spelling doaj.art-9c79911d5ed247cd9ce12a937e7511e22023-11-23T20:53:18ZengMDPI AGMaterials1996-19442022-02-01154144210.3390/ma15041442Dissolution of Portlandite in Pure Water: Part 2 Atomistic Kinetic Monte Carlo (KMC) ApproachMohammadreza Izadifar0Neven Ukrainczyk1Khondakar Mohammad Salah Uddin2Bernhard Middendorf3Eduardus Koenders4Institute of Construction and Building Materials, Technical University of Darmstadt, Franziska-Braun-Str. 3, 64287 Darmstadt, GermanyInstitute of Construction and Building Materials, Technical University of Darmstadt, Franziska-Braun-Str. 3, 64287 Darmstadt, GermanyDepartment of Structural Materials and Construction Chemistry, University of Kassel, Mönchebergstraße 7, 34125 Kassel, GermanyDepartment of Structural Materials and Construction Chemistry, University of Kassel, Mönchebergstraße 7, 34125 Kassel, GermanyInstitute of Construction and Building Materials, Technical University of Darmstadt, Franziska-Braun-Str. 3, 64287 Darmstadt, GermanyPortlandite, as a most soluble cement hydration reaction product, affects mechanical and durability properties of cementitious materials. In the present work, an atomistic kinetic Monte Carlo (KMC) upscaling approach is implemented in MATLAB code in order to investigate the dissolution time and morphology changes of a hexagonal platelet portlandite crystal. First, the atomistic rate constants of individual Ca dissolution events are computed by a transition state theory equation based on inputs of the computed activation energies (Δ<i>G*</i>) obtained through the metadynamics computational method (Part 1 of paper). Four different facets (100 or <inline-formula><math display="inline"><semantics><mrow><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mn>00</mn></mrow></semantics></math></inline-formula>, 010 or 0<inline-formula><math display="inline"><semantics><mover accent="true"><mn>1</mn><mo>¯</mo></mover></semantics></math></inline-formula>0, <inline-formula><math display="inline"><semantics><mrow><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mn>10</mn></mrow></semantics></math></inline-formula> or <inline-formula><math display="inline"><semantics><mrow><mn>1</mn><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mn>0</mn></mrow></semantics></math></inline-formula>, and 001 or 00<inline-formula><math display="inline"><semantics><mover accent="true"><mn>1</mn><mo>¯</mo></mover></semantics></math></inline-formula>) are considered, resulting in a total of 16 different atomistic event scenarios. Results of the upscaled KMC simulations demonstrate that dissolution process initially takes place from edges, sides, and facets of 010 or 0<inline-formula><math display="inline"><semantics><mover accent="true"><mn>1</mn><mo>¯</mo></mover></semantics></math></inline-formula>0 of the crystal morphology. The steady-state dissolution rate for the most reactive facets (010 or 0<inline-formula><math display="inline"><semantics><mrow><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mn>0</mn></mrow></semantics></math></inline-formula>) was computed to be 1.0443 mol/(s cm<sup>2</sup>); however, 0.0032 mol/(s cm<sup>2</sup>) for <inline-formula><math display="inline"><semantics><mrow><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mn>10</mn></mrow></semantics></math></inline-formula> or <inline-formula><math display="inline"><semantics><mrow><mn>1</mn><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mn>0</mn></mrow></semantics></math></inline-formula>, 2.672 × 10<sup>−7</sup> mol/(s cm<sup>2</sup>) for 001 or 00<inline-formula><math display="inline"><semantics><mover accent="true"><mn>1</mn><mo>¯</mo></mover></semantics></math></inline-formula>, and 0.31 × 10<sup>−16</sup> mol/(s cm<sup>2</sup>) for 100 or <inline-formula><math display="inline"><semantics><mrow><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mn>00</mn></mrow></semantics></math></inline-formula> were represented in a decreasing order for less reactive facets. Obtained upscaled dissolution rates between each facet resulted in a huge (16 orders of magnitude) difference, reflecting the importance of crystallographic orientation of the exposed facets.https://www.mdpi.com/1996-1944/15/4/1442portlanditecalcium hydroxideatomistic kinetic Monte Carloupscaling approachdissolution rate
spellingShingle Mohammadreza Izadifar
Neven Ukrainczyk
Khondakar Mohammad Salah Uddin
Bernhard Middendorf
Eduardus Koenders
Dissolution of Portlandite in Pure Water: Part 2 Atomistic Kinetic Monte Carlo (KMC) Approach
Materials
portlandite
calcium hydroxide
atomistic kinetic Monte Carlo
upscaling approach
dissolution rate
title Dissolution of Portlandite in Pure Water: Part 2 Atomistic Kinetic Monte Carlo (KMC) Approach
title_full Dissolution of Portlandite in Pure Water: Part 2 Atomistic Kinetic Monte Carlo (KMC) Approach
title_fullStr Dissolution of Portlandite in Pure Water: Part 2 Atomistic Kinetic Monte Carlo (KMC) Approach
title_full_unstemmed Dissolution of Portlandite in Pure Water: Part 2 Atomistic Kinetic Monte Carlo (KMC) Approach
title_short Dissolution of Portlandite in Pure Water: Part 2 Atomistic Kinetic Monte Carlo (KMC) Approach
title_sort dissolution of portlandite in pure water part 2 atomistic kinetic monte carlo kmc approach
topic portlandite
calcium hydroxide
atomistic kinetic Monte Carlo
upscaling approach
dissolution rate
url https://www.mdpi.com/1996-1944/15/4/1442
work_keys_str_mv AT mohammadrezaizadifar dissolutionofportlanditeinpurewaterpart2atomistickineticmontecarlokmcapproach
AT nevenukrainczyk dissolutionofportlanditeinpurewaterpart2atomistickineticmontecarlokmcapproach
AT khondakarmohammadsalahuddin dissolutionofportlanditeinpurewaterpart2atomistickineticmontecarlokmcapproach
AT bernhardmiddendorf dissolutionofportlanditeinpurewaterpart2atomistickineticmontecarlokmcapproach
AT eduarduskoenders dissolutionofportlanditeinpurewaterpart2atomistickineticmontecarlokmcapproach