Improved Results on Delay-Dependent and Order-Dependent Criteria of Fractional-Order Neural Networks with Time Delay Based on Sampled-Data Control

This paper studies the asymptotic stability of fractional-order neural networks (FONNs) with time delay utilizing a sampled-data controller. Firstly, a novel class of Lyapunov–Krasovskii functions (LKFs) is established, in which time delay and fractional-order information are fully taken into accoun...

Full description

Bibliographic Details
Main Authors: Junzhou Dai, Lianglin Xiong, Haiyang Zhang, Weiguo Rui
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/7/12/876
Description
Summary:This paper studies the asymptotic stability of fractional-order neural networks (FONNs) with time delay utilizing a sampled-data controller. Firstly, a novel class of Lyapunov–Krasovskii functions (LKFs) is established, in which time delay and fractional-order information are fully taken into account. Secondly, by combining with the fractional-order Leibniz–Newton formula, LKFs, and other analysis techniques, some less conservative stability criteria that depend on time delay and fractional-order information are given in terms of linear matrix inequalities (LMIs). In the meantime, the sampled-data controller gain is developed under a larger sampling interval. Last, the proposed criteria are shown to be valid and less conservative than the existing ones using three numerical examples.
ISSN:2504-3110