Summary: | Abstract Reintroduced animals—especially those raised in captivity—are faced with the unique challenge of navigating a wholly unfamiliar environment, and often make erratic or extensive movements after release. Naïveté to the reintroduction landscape can be costly, e.g., through increased energy expenditure, greater exposure to predation, and reduced opportunities to forage. Integration with an extant population may provide opportunities for social information transfer. However, in the absence of interactions with residents, it is unclear how individual and social learning may affect an animal’s ability to track resources in an unfamiliar landscape. We use integrated step selection functions (iSSFs) to address these knowledge gaps, by evaluating the extent to which environmental factors, individual experience (time since release), and social information-sharing (group size) influence movement decisions by scimitar-horned oryx (Oryx dammah) reintroduced into their native range for the first time in ca. 30 years. We found that both experience and social factors influenced the habitat selection and movement behavior of reintroduced oryx. Of four candidate iSSFs, the model that included environmental, experience, and group size variables performed best in both dry and wet periods. Statistically significant interaction terms between environmental variables and experience were generally larger than similar terms for group size, indicating that experience may affect habitat selection by reintroduced oryx more strongly than social factors. These findings may inform the management of recovering wildlife populations, update widely-held expectations about how released ungulates acclimate to novel landscapes, and demonstrate the utility of long-term monitoring of reintroduced populations.
|