Fluoride passivation of ZnO electron transport layers for efficient PbSe colloidal quantum dot photovoltaics

Abstract Lead selenide (PbSe) colloidal quantum dots (CQDs) are suitable for the development of the next-generation of photovoltaics (PVs) because of efficient multiple-exciton generation and strong charge coupling ability. To date, the reported high-efficient PbSe CQD PVs use spin-coated zinc oxide...

সম্পূর্ণ বিবরণ

গ্রন্থ-পঞ্জীর বিবরন
প্রধান লেখক: Jungang He, You Ge, Ya Wang, Mohan Yuan, Hang Xia, Xingchen Zhang, Xiao Chen, Xia Wang, Xianchang Zhou, Kanghua Li, Chao Chen, Jiang Tang
বিন্যাস: প্রবন্ধ
ভাষা:English
প্রকাশিত: Springer & Higher Education Press 2023-10-01
মালা:Frontiers of Optoelectronics
বিষয়গুলি:
অনলাইন ব্যবহার করুন:https://doi.org/10.1007/s12200-023-00082-3
বিবরন
সংক্ষিপ্ত:Abstract Lead selenide (PbSe) colloidal quantum dots (CQDs) are suitable for the development of the next-generation of photovoltaics (PVs) because of efficient multiple-exciton generation and strong charge coupling ability. To date, the reported high-efficient PbSe CQD PVs use spin-coated zinc oxide (ZnO) as the electron transport layer (ETL). However, it is found that the surface defects of ZnO present a difficulty in completion of passivation, and this impedes the continuous progress of devices. To address this disadvantage, fluoride (F) anions are employed for the surface passivation of ZnO through a chemical bath deposition method (CBD). The F-passivated ZnO ETL possesses decreased densities of oxygen vacancy and a favorable band alignment. Benefiting from these improvements, PbSe CQD PVs report an efficiency of 10.04%, comparatively 9.4% higher than that of devices using sol-gel (SG) ZnO as ETL. We are optimistic that this interface passivation strategy has great potential in the development of solution-processed CQD optoelectronic devices. Graphical Abstract
আইএসএসএন:2095-2767