Countable composition closedness and integer-valued continuous functions in pointfree topology

‎For any archimedean$f$-ring $A$ with unit in whichbreak$awedge‎ ‎(1-a)leq 0$ for all $ain A$‎, ‎the following are shown to be‎ ‎equivalent‎: ‎ ‎1‎. ‎$A$ is isomorphic to the $l$-ring ${mathfrak Z}L$ of all‎ ‎integer-valued continuous functions on some frame $L$‎. 2‎. ‎$A$ is a homomorphic imag...

Full description

Bibliographic Details
Main Author: Bernhard Banaschewski
Format: Article
Language:English
Published: Shahid Beheshti University 2013-12-01
Series:Categories and General Algebraic Structures with Applications
Subjects:
Online Access:http://www.cgasa.ir/article_4262_73b32f9f16cd67536694bb804916b55f.pdf
Description
Summary:‎For any archimedean$f$-ring $A$ with unit in whichbreak$awedge‎ ‎(1-a)leq 0$ for all $ain A$‎, ‎the following are shown to be‎ ‎equivalent‎: ‎ ‎1‎. ‎$A$ is isomorphic to the $l$-ring ${mathfrak Z}L$ of all‎ ‎integer-valued continuous functions on some frame $L$‎. 2‎. ‎$A$ is a homomorphic image of the $l$-ring $C_{Bbb Z}(X)$‎ ‎of all integer-valued continuous functions‎, ‎in the usual sense‎, ‎on some topological space $X$‎. 3‎. ‎For any family $(a_n)_{nin omega}$ in $A$ there exists an‎ ‎$l$-ring homomorphism break$varphi‎ :‎C_{Bbb Z}(Bbb‎ ‎Z^omega)rightarrow A$ such that $varphi(p_n)=a_n$ for the‎ ‎product projections break$p_n:{Bbb Z^omega}rightarrow Bbb Z$‎. ‎This provides an integer-valued counterpart to a familiar result‎ ‎concerning real-valued continuous functions‎.
ISSN:2345-5853
2345-5861