Countable composition closedness and integer-valued continuous functions in pointfree topology

‎For any archimedean$f$-ring $A$ with unit in whichbreak$awedge‎ ‎(1-a)leq 0$ for all $ain A$‎, ‎the following are shown to be‎ ‎equivalent‎: ‎ ‎1‎. ‎$A$ is isomorphic to the $l$-ring ${mathfrak Z}L$ of all‎ ‎integer-valued continuous functions on some frame $L$‎. 2‎. ‎$A$ is a homomorphic imag...

Full description

Bibliographic Details
Main Author: Bernhard Banaschewski
Format: Article
Language:English
Published: Shahid Beheshti University 2013-12-01
Series:Categories and General Algebraic Structures with Applications
Subjects:
Online Access:http://www.cgasa.ir/article_4262_73b32f9f16cd67536694bb804916b55f.pdf
_version_ 1818821311786385408
author Bernhard Banaschewski
author_facet Bernhard Banaschewski
author_sort Bernhard Banaschewski
collection DOAJ
description ‎For any archimedean$f$-ring $A$ with unit in whichbreak$awedge‎ ‎(1-a)leq 0$ for all $ain A$‎, ‎the following are shown to be‎ ‎equivalent‎: ‎ ‎1‎. ‎$A$ is isomorphic to the $l$-ring ${mathfrak Z}L$ of all‎ ‎integer-valued continuous functions on some frame $L$‎. 2‎. ‎$A$ is a homomorphic image of the $l$-ring $C_{Bbb Z}(X)$‎ ‎of all integer-valued continuous functions‎, ‎in the usual sense‎, ‎on some topological space $X$‎. 3‎. ‎For any family $(a_n)_{nin omega}$ in $A$ there exists an‎ ‎$l$-ring homomorphism break$varphi‎ :‎C_{Bbb Z}(Bbb‎ ‎Z^omega)rightarrow A$ such that $varphi(p_n)=a_n$ for the‎ ‎product projections break$p_n:{Bbb Z^omega}rightarrow Bbb Z$‎. ‎This provides an integer-valued counterpart to a familiar result‎ ‎concerning real-valued continuous functions‎.
first_indexed 2024-12-18T23:06:11Z
format Article
id doaj.art-9ca2a383409d4486ae016c56087047b7
institution Directory Open Access Journal
issn 2345-5853
2345-5861
language English
last_indexed 2024-12-18T23:06:11Z
publishDate 2013-12-01
publisher Shahid Beheshti University
record_format Article
series Categories and General Algebraic Structures with Applications
spelling doaj.art-9ca2a383409d4486ae016c56087047b72022-12-21T20:48:26ZengShahid Beheshti UniversityCategories and General Algebraic Structures with Applications2345-58532345-58612013-12-01111104262Countable composition closedness and integer-valued continuous functions in pointfree topologyBernhard Banaschewski0Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, L8S 4K1, Canada.‎For any archimedean$f$-ring $A$ with unit in whichbreak$awedge‎ ‎(1-a)leq 0$ for all $ain A$‎, ‎the following are shown to be‎ ‎equivalent‎: ‎ ‎1‎. ‎$A$ is isomorphic to the $l$-ring ${mathfrak Z}L$ of all‎ ‎integer-valued continuous functions on some frame $L$‎. 2‎. ‎$A$ is a homomorphic image of the $l$-ring $C_{Bbb Z}(X)$‎ ‎of all integer-valued continuous functions‎, ‎in the usual sense‎, ‎on some topological space $X$‎. 3‎. ‎For any family $(a_n)_{nin omega}$ in $A$ there exists an‎ ‎$l$-ring homomorphism break$varphi‎ :‎C_{Bbb Z}(Bbb‎ ‎Z^omega)rightarrow A$ such that $varphi(p_n)=a_n$ for the‎ ‎product projections break$p_n:{Bbb Z^omega}rightarrow Bbb Z$‎. ‎This provides an integer-valued counterpart to a familiar result‎ ‎concerning real-valued continuous functions‎.http://www.cgasa.ir/article_4262_73b32f9f16cd67536694bb804916b55f.pdfFrames0-dimensional framesinteger-valued continuous functions on framesarchimedean ${mathbb Z}$-ringscountable $mathbb {Z}$-composition closedness
spellingShingle Bernhard Banaschewski
Countable composition closedness and integer-valued continuous functions in pointfree topology
Categories and General Algebraic Structures with Applications
Frames
0-dimensional frames
integer-valued continuous functions on frames
archimedean ${mathbb Z}$-rings
countable $mathbb {Z}$-composition closedness
title Countable composition closedness and integer-valued continuous functions in pointfree topology
title_full Countable composition closedness and integer-valued continuous functions in pointfree topology
title_fullStr Countable composition closedness and integer-valued continuous functions in pointfree topology
title_full_unstemmed Countable composition closedness and integer-valued continuous functions in pointfree topology
title_short Countable composition closedness and integer-valued continuous functions in pointfree topology
title_sort countable composition closedness and integer valued continuous functions in pointfree topology
topic Frames
0-dimensional frames
integer-valued continuous functions on frames
archimedean ${mathbb Z}$-rings
countable $mathbb {Z}$-composition closedness
url http://www.cgasa.ir/article_4262_73b32f9f16cd67536694bb804916b55f.pdf
work_keys_str_mv AT bernhardbanaschewski countablecompositionclosednessandintegervaluedcontinuousfunctionsinpointfreetopology