Multi-Scale Tumor Localization Based on Priori Guidance-Based Segmentation Method for Osteosarcoma MRI Images
Osteosarcoma is a malignant osteosarcoma that is extremely harmful to human health. Magnetic resonance imaging (MRI) technology is one of the commonly used methods for the imaging examination of osteosarcoma. Due to the large amount of osteosarcoma MRI image data and the complexity of detection, man...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-06-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/10/12/2099 |
_version_ | 1797484694285058048 |
---|---|
author | Baolong Lv Feng Liu Fangfang Gou Jia Wu |
author_facet | Baolong Lv Feng Liu Fangfang Gou Jia Wu |
author_sort | Baolong Lv |
collection | DOAJ |
description | Osteosarcoma is a malignant osteosarcoma that is extremely harmful to human health. Magnetic resonance imaging (MRI) technology is one of the commonly used methods for the imaging examination of osteosarcoma. Due to the large amount of osteosarcoma MRI image data and the complexity of detection, manual identification of osteosarcoma in MRI images is a time-consuming and labor-intensive task for doctors, and it is highly subjective, which can easily lead to missed and misdiagnosed problems. AI medical image-assisted diagnosis alleviates this problem. However, the brightness of MRI images and the multi-scale of osteosarcoma make existing studies still face great challenges in the identification of tumor boundaries. Based on this, this study proposed a prior guidance-based assisted segmentation method for MRI images of osteosarcoma, which is based on the few-shot technique for tumor segmentation and fine fitting. It not only solves the problem of multi-scale tumor localization, but also greatly improves the recognition accuracy of tumor boundaries. First, we preprocessed the MRI images using prior generation and normalization algorithms to reduce model performance degradation caused by irrelevant regions and high-level features. Then, we used a prior-guided feature abdominal muscle network to perform small-sample segmentation of tumors of different sizes based on features in the processed MRI images. Finally, using more than 80,000 MRI images from the Second Xiangya Hospital for experiments, the DOU value of the method proposed in this paper reached 0.945, which is at least 4.3% higher than other models in the experiment. We showed that our method specifically has higher prediction accuracy and lower resource consumption. |
first_indexed | 2024-03-09T23:08:04Z |
format | Article |
id | doaj.art-9cabb3984d8c4dd8aca0e236ea814c71 |
institution | Directory Open Access Journal |
issn | 2227-7390 |
language | English |
last_indexed | 2024-03-09T23:08:04Z |
publishDate | 2022-06-01 |
publisher | MDPI AG |
record_format | Article |
series | Mathematics |
spelling | doaj.art-9cabb3984d8c4dd8aca0e236ea814c712023-11-23T17:49:42ZengMDPI AGMathematics2227-73902022-06-011012209910.3390/math10122099Multi-Scale Tumor Localization Based on Priori Guidance-Based Segmentation Method for Osteosarcoma MRI ImagesBaolong Lv0Feng Liu1Fangfang Gou2Jia Wu3School of Information Engineering, Shandong Youth University of Political Science, Jinan 250102, ChinaSchool of Information Engineering, Shandong Youth University of Political Science, Jinan 250102, ChinaSchool of Computer Science and Engineering, Central South University, Changsha 410017, ChinaSchool of Computer Science and Engineering, Central South University, Changsha 410017, ChinaOsteosarcoma is a malignant osteosarcoma that is extremely harmful to human health. Magnetic resonance imaging (MRI) technology is one of the commonly used methods for the imaging examination of osteosarcoma. Due to the large amount of osteosarcoma MRI image data and the complexity of detection, manual identification of osteosarcoma in MRI images is a time-consuming and labor-intensive task for doctors, and it is highly subjective, which can easily lead to missed and misdiagnosed problems. AI medical image-assisted diagnosis alleviates this problem. However, the brightness of MRI images and the multi-scale of osteosarcoma make existing studies still face great challenges in the identification of tumor boundaries. Based on this, this study proposed a prior guidance-based assisted segmentation method for MRI images of osteosarcoma, which is based on the few-shot technique for tumor segmentation and fine fitting. It not only solves the problem of multi-scale tumor localization, but also greatly improves the recognition accuracy of tumor boundaries. First, we preprocessed the MRI images using prior generation and normalization algorithms to reduce model performance degradation caused by irrelevant regions and high-level features. Then, we used a prior-guided feature abdominal muscle network to perform small-sample segmentation of tumors of different sizes based on features in the processed MRI images. Finally, using more than 80,000 MRI images from the Second Xiangya Hospital for experiments, the DOU value of the method proposed in this paper reached 0.945, which is at least 4.3% higher than other models in the experiment. We showed that our method specifically has higher prediction accuracy and lower resource consumption.https://www.mdpi.com/2227-7390/10/12/2099osteosarcomaMRI image segmentationmultiscale tumor localizationprior guidanceAI-assisted diagnosis |
spellingShingle | Baolong Lv Feng Liu Fangfang Gou Jia Wu Multi-Scale Tumor Localization Based on Priori Guidance-Based Segmentation Method for Osteosarcoma MRI Images Mathematics osteosarcoma MRI image segmentation multiscale tumor localization prior guidance AI-assisted diagnosis |
title | Multi-Scale Tumor Localization Based on Priori Guidance-Based Segmentation Method for Osteosarcoma MRI Images |
title_full | Multi-Scale Tumor Localization Based on Priori Guidance-Based Segmentation Method for Osteosarcoma MRI Images |
title_fullStr | Multi-Scale Tumor Localization Based on Priori Guidance-Based Segmentation Method for Osteosarcoma MRI Images |
title_full_unstemmed | Multi-Scale Tumor Localization Based on Priori Guidance-Based Segmentation Method for Osteosarcoma MRI Images |
title_short | Multi-Scale Tumor Localization Based on Priori Guidance-Based Segmentation Method for Osteosarcoma MRI Images |
title_sort | multi scale tumor localization based on priori guidance based segmentation method for osteosarcoma mri images |
topic | osteosarcoma MRI image segmentation multiscale tumor localization prior guidance AI-assisted diagnosis |
url | https://www.mdpi.com/2227-7390/10/12/2099 |
work_keys_str_mv | AT baolonglv multiscaletumorlocalizationbasedonprioriguidancebasedsegmentationmethodforosteosarcomamriimages AT fengliu multiscaletumorlocalizationbasedonprioriguidancebasedsegmentationmethodforosteosarcomamriimages AT fangfanggou multiscaletumorlocalizationbasedonprioriguidancebasedsegmentationmethodforosteosarcomamriimages AT jiawu multiscaletumorlocalizationbasedonprioriguidancebasedsegmentationmethodforosteosarcomamriimages |