One-photon red light-triggered disassembly of small-molecule nanoparticles for drug delivery

Abstract Background Photoresponsive drug delivery can achieve spatiotemporal control of drug accumulation at desired sites. Long-wavelength light is preferable owing to its deep tissue penetration and low toxicity. One-photon upconversion-like photolysis via triplet–triplet energy transfer (TTET) be...

Full description

Bibliographic Details
Main Authors: Kaiqi Long, Han Han, Weirong Kang, Wen Lv, Lang Wang, Yufeng Wang, Liang Ge, Weiping Wang
Format: Article
Language:English
Published: BMC 2021-11-01
Series:Journal of Nanobiotechnology
Subjects:
Online Access:https://doi.org/10.1186/s12951-021-01103-z
Description
Summary:Abstract Background Photoresponsive drug delivery can achieve spatiotemporal control of drug accumulation at desired sites. Long-wavelength light is preferable owing to its deep tissue penetration and low toxicity. One-photon upconversion-like photolysis via triplet–triplet energy transfer (TTET) between photosensitizer and photoresponsive group enables the use of long-wavelength light to activate short-wavelength light-responsive groups. However, such process requires oxygen-free environment to achieve efficient photolysis due to the oxygen quenching of triplet excited states. Results Herein, we report a strategy that uses red light to trigger disassembly of small-molecule nanoparticles by one-photon upconversion-like photolysis for cancer therapy. A photocleavable trigonal molecule, BTAEA, self-assembled into nanoparticles and enclosed photosensitizer, PtTPBP. Such nanoparticles protected TTET-based photolysis from oxygen quenching in normoxia aqueous solutions, resulting in efficient red light-triggered BTAEA cleavage, dissociation of nanoparticles and subsequent cargo release. With paclitaxel as the model drug, the red light-triggered drug release system demonstrated promising anti-tumor efficacy both in vitro and in vivo. Conclusions This study provides a practical reference for constructing photoresponsive nanocarriers based on the one-photon upconversion-like photolysis. Graphical Abstract
ISSN:1477-3155