A Spatiotemporal Deep Learning Architecture for Road Surface Classification Using LiDAR in Autonomous Emergency Braking Systems
This paper proposes a spatiotemporal architecture with a deep neural network (DNN) for road surface conditions and types classification using LiDAR for autonomous emergency braking (AEB) systems. It is known that LiDAR provides information on the reflectivity and number of point clouds depending on...
Autores principales: | Ju Won Seo, Jin Sung Kim, Jin Ho Yang, Chung Choo Chung |
---|---|
Formato: | Artículo |
Lenguaje: | English |
Publicado: |
IEEE
2023-01-01
|
Colección: | IEEE Access |
Materias: | |
Acceso en línea: | https://ieeexplore.ieee.org/document/10286502/ |
Ejemplares similares
-
Robust LiDAR-Based Vehicle Detection for On-Road Autonomous Driving
por: Xianjian Jin, et al.
Publicado: (2023-06-01) -
Adversarial robustness analysis of LiDAR-included models in autonomous driving
por: Bo Yang, et al.
Publicado: (2024-03-01) -
Synthesis of LiDAR-Detectable True Black Core/Shell Nanomaterial and Its Practical Use in LiDAR Applications
por: Suk Jekal, et al.
Publicado: (2022-10-01) -
The Design of Distance-Warning and Brake Pressure Control Systems Incorporating LiDAR Technology for Use in Autonomous Vehicles
por: Soontorn Odngam, et al.
Publicado: (2024-12-01) -
LiDAR Intensity Completion: Fully Exploiting the Message from LiDAR Sensors
por: Weichen Dai, et al.
Publicado: (2022-10-01)