A Preconditioner for Galerkin–Legendre Spectral All-at-Once System from Time-Space Fractional Diffusion Equation
As a model that possesses both the potentialities of Caputo time fractional diffusion equation (Caputo-TFDE) and symmetric two-sided space fractional diffusion equation (Riesz-SFDE), time-space fractional diffusion equation (TSFDE) is widely applied in scientific and engineering fields to model anom...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-12-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/15/12/2144 |
_version_ | 1797379305550905344 |
---|---|
author | Meijuan Wang Shugong Zhang |
author_facet | Meijuan Wang Shugong Zhang |
author_sort | Meijuan Wang |
collection | DOAJ |
description | As a model that possesses both the potentialities of Caputo time fractional diffusion equation (Caputo-TFDE) and symmetric two-sided space fractional diffusion equation (Riesz-SFDE), time-space fractional diffusion equation (TSFDE) is widely applied in scientific and engineering fields to model anomalous diffusion phenomena including subdiffusion and superdiffusion. Due to the fact that fractional operators act on both temporal and spatial derivative terms in TSFDE, efficient solving for TSFDE is important, where the key is solving the corresponding discrete system efficiently. In this paper, we derive a Galerkin–Legendre spectral all-at-once system from the TSFDE, and then we develop a preconditioner to solve this system. Symmetry property of the coefficient matrix in this all-at-once system is destroyed so that the deduced all-at-once system is more convenient for parallel computing than the traditional timing-step scheme, and the proposed preconditioner can efficiently solve the corresponding all-at-once system from TSFDE with nonsmooth solution. Moreover, some relevant theoretical analyses are provided, and several numerical results are presented to show competitiveness of the proposed method. |
first_indexed | 2024-03-08T20:20:14Z |
format | Article |
id | doaj.art-9cc2e6735fbe4a7194e929a917a6a869 |
institution | Directory Open Access Journal |
issn | 2073-8994 |
language | English |
last_indexed | 2024-03-08T20:20:14Z |
publishDate | 2023-12-01 |
publisher | MDPI AG |
record_format | Article |
series | Symmetry |
spelling | doaj.art-9cc2e6735fbe4a7194e929a917a6a8692023-12-22T14:45:11ZengMDPI AGSymmetry2073-89942023-12-011512214410.3390/sym15122144A Preconditioner for Galerkin–Legendre Spectral All-at-Once System from Time-Space Fractional Diffusion EquationMeijuan Wang0Shugong Zhang1School of Mathematics, Jilin University, Changchun 130012, ChinaSchool of Mathematics, Jilin University, Changchun 130012, ChinaAs a model that possesses both the potentialities of Caputo time fractional diffusion equation (Caputo-TFDE) and symmetric two-sided space fractional diffusion equation (Riesz-SFDE), time-space fractional diffusion equation (TSFDE) is widely applied in scientific and engineering fields to model anomalous diffusion phenomena including subdiffusion and superdiffusion. Due to the fact that fractional operators act on both temporal and spatial derivative terms in TSFDE, efficient solving for TSFDE is important, where the key is solving the corresponding discrete system efficiently. In this paper, we derive a Galerkin–Legendre spectral all-at-once system from the TSFDE, and then we develop a preconditioner to solve this system. Symmetry property of the coefficient matrix in this all-at-once system is destroyed so that the deduced all-at-once system is more convenient for parallel computing than the traditional timing-step scheme, and the proposed preconditioner can efficiently solve the corresponding all-at-once system from TSFDE with nonsmooth solution. Moreover, some relevant theoretical analyses are provided, and several numerical results are presented to show competitiveness of the proposed method.https://www.mdpi.com/2073-8994/15/12/2144all-at-once linear systempreconditionerspectral distributiontime-space fractional equationKrylov subspace method |
spellingShingle | Meijuan Wang Shugong Zhang A Preconditioner for Galerkin–Legendre Spectral All-at-Once System from Time-Space Fractional Diffusion Equation Symmetry all-at-once linear system preconditioner spectral distribution time-space fractional equation Krylov subspace method |
title | A Preconditioner for Galerkin–Legendre Spectral All-at-Once System from Time-Space Fractional Diffusion Equation |
title_full | A Preconditioner for Galerkin–Legendre Spectral All-at-Once System from Time-Space Fractional Diffusion Equation |
title_fullStr | A Preconditioner for Galerkin–Legendre Spectral All-at-Once System from Time-Space Fractional Diffusion Equation |
title_full_unstemmed | A Preconditioner for Galerkin–Legendre Spectral All-at-Once System from Time-Space Fractional Diffusion Equation |
title_short | A Preconditioner for Galerkin–Legendre Spectral All-at-Once System from Time-Space Fractional Diffusion Equation |
title_sort | preconditioner for galerkin legendre spectral all at once system from time space fractional diffusion equation |
topic | all-at-once linear system preconditioner spectral distribution time-space fractional equation Krylov subspace method |
url | https://www.mdpi.com/2073-8994/15/12/2144 |
work_keys_str_mv | AT meijuanwang apreconditionerforgalerkinlegendrespectralallatoncesystemfromtimespacefractionaldiffusionequation AT shugongzhang apreconditionerforgalerkinlegendrespectralallatoncesystemfromtimespacefractionaldiffusionequation AT meijuanwang preconditionerforgalerkinlegendrespectralallatoncesystemfromtimespacefractionaldiffusionequation AT shugongzhang preconditionerforgalerkinlegendrespectralallatoncesystemfromtimespacefractionaldiffusionequation |