Fresh and Browned Lotus Root Extracts Promote Cholesterol Metabolism in FFA-Induced HepG2 Cells through Different Pathways
Browning of fresh-cut plants is mainly attributed to the enzymatic browning of phenolic compounds induced by polyphenol oxidase (PPO), producing browning products such as anthraquinones, flavanol oxides, and glycosides, which are usually considered to be non-toxic. Could browning bring any benefits...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-04-01
|
Series: | Foods |
Subjects: | |
Online Access: | https://www.mdpi.com/2304-8158/12/9/1781 |
_version_ | 1797602635714396160 |
---|---|
author | Shuyuan Zhong Jingfang Li Meng Wei Zeyuan Deng Xiaoru Liu |
author_facet | Shuyuan Zhong Jingfang Li Meng Wei Zeyuan Deng Xiaoru Liu |
author_sort | Shuyuan Zhong |
collection | DOAJ |
description | Browning of fresh-cut plants is mainly attributed to the enzymatic browning of phenolic compounds induced by polyphenol oxidase (PPO), producing browning products such as anthraquinones, flavanol oxides, and glycosides, which are usually considered to be non-toxic. Could browning bring any benefits on behalf of their bioactivity? Our previous study found that browned lotus root extracts (BLREs) could reduce the cholesterol level in obese mice as fresh lotus root extracts (FLREs) did. This study aimed to compare the mechanisms of FLRE and BLRE on cholesterol metabolism and verify whether the main component’s monomer regulates cholesterol metabolism like the extracts do through in vitro experiments. Extracts and monomeric compounds are applied to HepG2 cells induced by free fatty acids (FFA). Extracellular total cholesterol (TC) and triglyceride (TG) levels were also detected. In addition, RT-PCR and Western blot were used to observe cholesterol metabolism-related gene and protein expression. The in vitro results showed that BLRE and FLRE could reduce TC and TG levels in HepG2 cells. In addition, BLRE suppressed the synthesis of cholesterol. Meanwhile, FLRE promoted the synthesis of bile acid (BA) as well as the clearance and efflux of cholesterol. Furthermore, the main monomers of BLRE also decreased cholesterol synthesis, which is the same as BLRE. In addition, the main monomers of FLRE promoted the synthesis of BAs, similar to FLRE. BLRE and FLRE promote cholesterol metabolism by different pathways. |
first_indexed | 2024-03-11T04:19:23Z |
format | Article |
id | doaj.art-9cdf95750b644304aba69e49d6fd05ef |
institution | Directory Open Access Journal |
issn | 2304-8158 |
language | English |
last_indexed | 2024-03-11T04:19:23Z |
publishDate | 2023-04-01 |
publisher | MDPI AG |
record_format | Article |
series | Foods |
spelling | doaj.art-9cdf95750b644304aba69e49d6fd05ef2023-11-17T22:54:47ZengMDPI AGFoods2304-81582023-04-01129178110.3390/foods12091781Fresh and Browned Lotus Root Extracts Promote Cholesterol Metabolism in FFA-Induced HepG2 Cells through Different PathwaysShuyuan Zhong0Jingfang Li1Meng Wei2Zeyuan Deng3Xiaoru Liu4State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, ChinaState Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, ChinaState Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, ChinaState Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, ChinaState Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, ChinaBrowning of fresh-cut plants is mainly attributed to the enzymatic browning of phenolic compounds induced by polyphenol oxidase (PPO), producing browning products such as anthraquinones, flavanol oxides, and glycosides, which are usually considered to be non-toxic. Could browning bring any benefits on behalf of their bioactivity? Our previous study found that browned lotus root extracts (BLREs) could reduce the cholesterol level in obese mice as fresh lotus root extracts (FLREs) did. This study aimed to compare the mechanisms of FLRE and BLRE on cholesterol metabolism and verify whether the main component’s monomer regulates cholesterol metabolism like the extracts do through in vitro experiments. Extracts and monomeric compounds are applied to HepG2 cells induced by free fatty acids (FFA). Extracellular total cholesterol (TC) and triglyceride (TG) levels were also detected. In addition, RT-PCR and Western blot were used to observe cholesterol metabolism-related gene and protein expression. The in vitro results showed that BLRE and FLRE could reduce TC and TG levels in HepG2 cells. In addition, BLRE suppressed the synthesis of cholesterol. Meanwhile, FLRE promoted the synthesis of bile acid (BA) as well as the clearance and efflux of cholesterol. Furthermore, the main monomers of BLRE also decreased cholesterol synthesis, which is the same as BLRE. In addition, the main monomers of FLRE promoted the synthesis of BAs, similar to FLRE. BLRE and FLRE promote cholesterol metabolism by different pathways.https://www.mdpi.com/2304-8158/12/9/1781browned lotus rootcholesterol metabolismbile acid synthesischolesterol synthesis |
spellingShingle | Shuyuan Zhong Jingfang Li Meng Wei Zeyuan Deng Xiaoru Liu Fresh and Browned Lotus Root Extracts Promote Cholesterol Metabolism in FFA-Induced HepG2 Cells through Different Pathways Foods browned lotus root cholesterol metabolism bile acid synthesis cholesterol synthesis |
title | Fresh and Browned Lotus Root Extracts Promote Cholesterol Metabolism in FFA-Induced HepG2 Cells through Different Pathways |
title_full | Fresh and Browned Lotus Root Extracts Promote Cholesterol Metabolism in FFA-Induced HepG2 Cells through Different Pathways |
title_fullStr | Fresh and Browned Lotus Root Extracts Promote Cholesterol Metabolism in FFA-Induced HepG2 Cells through Different Pathways |
title_full_unstemmed | Fresh and Browned Lotus Root Extracts Promote Cholesterol Metabolism in FFA-Induced HepG2 Cells through Different Pathways |
title_short | Fresh and Browned Lotus Root Extracts Promote Cholesterol Metabolism in FFA-Induced HepG2 Cells through Different Pathways |
title_sort | fresh and browned lotus root extracts promote cholesterol metabolism in ffa induced hepg2 cells through different pathways |
topic | browned lotus root cholesterol metabolism bile acid synthesis cholesterol synthesis |
url | https://www.mdpi.com/2304-8158/12/9/1781 |
work_keys_str_mv | AT shuyuanzhong freshandbrownedlotusrootextractspromotecholesterolmetabolisminffainducedhepg2cellsthroughdifferentpathways AT jingfangli freshandbrownedlotusrootextractspromotecholesterolmetabolisminffainducedhepg2cellsthroughdifferentpathways AT mengwei freshandbrownedlotusrootextractspromotecholesterolmetabolisminffainducedhepg2cellsthroughdifferentpathways AT zeyuandeng freshandbrownedlotusrootextractspromotecholesterolmetabolisminffainducedhepg2cellsthroughdifferentpathways AT xiaoruliu freshandbrownedlotusrootextractspromotecholesterolmetabolisminffainducedhepg2cellsthroughdifferentpathways |