An Analog of Titchmarsh's Theorem for the Jacobi-Dunkl Transform in the Space L2α,β(R)
<span lang="EN-US">In this paper, using a generalized Jacobi-Dunkl translation operator, we prove an analog of Titchmarsh's theorem for functions satisfying the Jacobi-Dunkl Lipschitz condition in $ L^{2}(\R,A_{\alpha ,\beta}(t)dt), \alpha \geq \beta\geq-\frac{1}{2}, \alpha \n...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Etamaths Publishing
2015-05-01
|
Series: | International Journal of Analysis and Applications |
Online Access: | http://etamaths.com/index.php/ijaa/article/view/484 |
Summary: | <span lang="EN-US">In this paper, using a generalized Jacobi-Dunkl translation operator, we prove an analog of Titchmarsh's theorem for functions satisfying the Jacobi-Dunkl Lipschitz condition in $ L^{2}(\R,A_{\alpha ,\beta}(t)dt), \alpha \geq \beta\geq-\frac{1}{2}, \alpha \neq -\frac{1}{2}.$</span> |
---|---|
ISSN: | 2291-8639 |