An Analog of Titchmarsh's Theorem for the Jacobi-Dunkl Transform in the Space L2α,β(R)

<span lang="EN-US">In this paper, using a generalized Jacobi-Dunkl translation operator, we prove an analog of Titchmarsh's theorem  for functions satisfying the Jacobi-Dunkl Lipschitz  condition in $ L^{2}(\R,A_{\alpha ,\beta}(t)dt), \alpha \geq \beta\geq-\frac{1}{2}, \alpha \n...

Full description

Bibliographic Details
Main Authors: A. Abouelaz, A. Belkhadir, R. Daher
Format: Article
Language:English
Published: Etamaths Publishing 2015-05-01
Series:International Journal of Analysis and Applications
Online Access:http://etamaths.com/index.php/ijaa/article/view/484
Description
Summary:<span lang="EN-US">In this paper, using a generalized Jacobi-Dunkl translation operator, we prove an analog of Titchmarsh's theorem  for functions satisfying the Jacobi-Dunkl Lipschitz  condition in $ L^{2}(\R,A_{\alpha ,\beta}(t)dt), \alpha \geq \beta\geq-\frac{1}{2}, \alpha \neq -\frac{1}{2}.$</span>
ISSN:2291-8639