Summary: | The dire need for the assessment of human and environmental endangerments of nanoparticulate material has motivated the formulation of novel scientific tools and techniques to detect, quantify, and characterize these nanomaterials. Several of these paradigms possess enormous possibilities for applications in many of the realms of nanotoxicology. Furthermore, in a large number of cases, the limited capabilities to assess the environmental and human toxicological outcomes of customized and tailored multifunctional nanoparticles used for drug delivery have hindered their full exploitation in preclinical and clinical settings. With the ever-compounded availability of nanoparticulate materials in commercialized settings, an ever-arising popular debate has been egressing on whether the social, human, and environmental costs associated with the risks of nanomaterials outweigh their profits. Here we briefly review the various health, pharmaceutical, and regulatory aspects of nanotoxicology of engineered multifunctional nanoparticles in vitro and in vivo. Several aspects and issues encountered during the safety and toxicity assessments of these drug-delivery nanocarriers have also been summarized. Furthermore, recent trends implicated in the nanotoxicological evaluations of nanoparticulate matter in vitro and in vivo have also been discussed. Due to the absence of robust and rigid regulatory guidelines, researchers currently frequently encounter a larger number of challenges in the toxicology assessment of nanocarriers, which have also been briefly discussed here. Nanotoxicology has an appreciable and significant part in the clinical translational development as well as commercialization potential of nanocarriers; hence these aspects have also been touched upon. Finally, a brief overview has been provided regarding some of the nanocarrier-based medicines that are currently undergoing clinical trials, and some of those which have recently been commercialized and are available for patients. It is expected that this review will instigate an appreciable interest in the research community working in the arena of pharmaceutical drug development and nanoformulation-based drug delivery.
|