Summary: | Abstract Climate change is expected to increase drought intensity and frequency, which are commonly predicted will threaten the survival of forests. Most forest die‐off projections assume that recent tree mortality will not alter die‐off severity during subsequent droughts. We tested this assumption by comparing die‐off in semi‐arid conifer forest stands in California that were exposed to a single drought in 2012–2015 (“2nd Drought Only”) with forest stands that experienced drought in both 1999–2002 and 2012–2015 (“Both Droughts”). We quantified die‐off severity as a reduction in the satellite observed Normalized Difference Moisture Index, and cumulative moisture deficit as negative 4‐year Precipitation minus Evapotranspiration (4‐year Pr‐ET overdraft). Here we show that recent tree morality reduces die‐off severity in semi‐arid conifer forests exposed to subsequent drought. Stands in the 2nd Drought Only sample experienced severe die‐off associated with extreme 4‐year Pr‐ET overdraft in 2012–2015. Stands in the Both Droughts sample experienced severe die‐off and 4‐year Pr‐ET overdraft in 1999–2002, but comparatively little 2012–2015 die‐off despite continued 4‐year Pr‐ET overdraft. We interpret this as a dampening effect, where prior tree mortality reduces forest die‐off severity during subsequent drought exposure. As forests continue to experience disturbances linked to climate change, dampening effects will impose a transient, and perhaps long‐term, constraint on the impact of repeated drought.
|