Two-loop scattering amplitude for heavy-quark pair production through light-quark annihilation in QCD

Abstract We present the first full analytic evaluation of the scattering amplitude for the process qq → Q Q ¯ $$ Q\overline{Q} $$ up-to two loops in Quantum Chromodynamics, for a massless (q) and a massive (Q) quark flavour. The interference terms of the one- and two-loop amplitudes with the Born am...

Full description

Bibliographic Details
Main Authors: Manoj K. Mandal, Pierpaolo Mastrolia, Jonathan Ronca, William J. Torres Bobadilla
Format: Article
Language:English
Published: SpringerOpen 2022-09-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP09(2022)129
Description
Summary:Abstract We present the first full analytic evaluation of the scattering amplitude for the process qq → Q Q ¯ $$ Q\overline{Q} $$ up-to two loops in Quantum Chromodynamics, for a massless (q) and a massive (Q) quark flavour. The interference terms of the one- and two-loop amplitudes with the Born amplitude, decomposed in terms of gauge invariant form factors depending on the colour and flavour structure, are analytically calculated by keeping complete dependence on the squared center-of-mass energy, the squared momentum transfer, and the heavy-quark mass. The results are expressed as Laurent series around four space-time dimensions, with coefficients given in terms of generalised polylogarithms and transcendental constants up-to weight four. Our results validate the known, purely numerical calculations of the squared amplitude, and extend the analytic knowledge, previously limited to a subset of form factors, to their whole set, coming from both planar and non-planar diagrams, up-to the second order corrections in the strong coupling constant.
ISSN:1029-8479