A double-channel multiscale depthwise separable convolutional neural network for abnormal gait recognition

Abnormal gait recognition is important for detecting body part weakness and diagnosing diseases. The abnormal gait hides a considerable amount of information. In order to extract the fine, spatial feature information in the abnormal gait and reduce the computational cost arising from excessive netwo...

Full description

Bibliographic Details
Main Authors: Xiaoguang Liu, Yubo Wu, Meng Chen, Tie Liang, Fei Han, Xiuling Liu
Format: Article
Language:English
Published: AIMS Press 2023-02-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mbe.2023349?viewType=HTML
_version_ 1827990163615121408
author Xiaoguang Liu
Yubo Wu
Meng Chen
Tie Liang
Fei Han
Xiuling Liu
author_facet Xiaoguang Liu
Yubo Wu
Meng Chen
Tie Liang
Fei Han
Xiuling Liu
author_sort Xiaoguang Liu
collection DOAJ
description Abnormal gait recognition is important for detecting body part weakness and diagnosing diseases. The abnormal gait hides a considerable amount of information. In order to extract the fine, spatial feature information in the abnormal gait and reduce the computational cost arising from excessive network parameters, this paper proposes a double-channel multiscale depthwise separable convolutional neural network (DCMSDSCNN) for abnormal gait recognition. The method designs a multiscale depthwise feature extraction block (MDB), uses depthwise separable convolution (DSC) instead of standard convolution in the module and introduces the Bottleneck (BK) structure to optimize the MDB. The module achieves the extraction of effective features of abnormal gaits at different scales, and reduces the computational cost of the network. Experimental results show that the gait recognition accuracy is up to 99.60%, while the memory size of the model is reduced 4.21 times than before optimization.
first_indexed 2024-04-10T00:31:05Z
format Article
id doaj.art-9d1b532f1e694ef1b8349c7ec5c40a77
institution Directory Open Access Journal
issn 1551-0018
language English
last_indexed 2024-04-10T00:31:05Z
publishDate 2023-02-01
publisher AIMS Press
record_format Article
series Mathematical Biosciences and Engineering
spelling doaj.art-9d1b532f1e694ef1b8349c7ec5c40a772023-03-15T01:17:31ZengAIMS PressMathematical Biosciences and Engineering1551-00182023-02-012058049806710.3934/mbe.2023349A double-channel multiscale depthwise separable convolutional neural network for abnormal gait recognitionXiaoguang Liu 0Yubo Wu1Meng Chen2Tie Liang3Fei Han 4Xiuling Liu 51. College of Electronic and Information Engineering, Hebei University, Baoding, China 2. Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding, China1. College of Electronic and Information Engineering, Hebei University, Baoding, China 2. Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding, China 1. College of Electronic and Information Engineering, Hebei University, Baoding, China 2. Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding, China 1. College of Electronic and Information Engineering, Hebei University, Baoding, China 2. Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding, China1. College of Electronic and Information Engineering, Hebei University, Baoding, China 2. Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding, China1. College of Electronic and Information Engineering, Hebei University, Baoding, China 2. Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding, ChinaAbnormal gait recognition is important for detecting body part weakness and diagnosing diseases. The abnormal gait hides a considerable amount of information. In order to extract the fine, spatial feature information in the abnormal gait and reduce the computational cost arising from excessive network parameters, this paper proposes a double-channel multiscale depthwise separable convolutional neural network (DCMSDSCNN) for abnormal gait recognition. The method designs a multiscale depthwise feature extraction block (MDB), uses depthwise separable convolution (DSC) instead of standard convolution in the module and introduces the Bottleneck (BK) structure to optimize the MDB. The module achieves the extraction of effective features of abnormal gaits at different scales, and reduces the computational cost of the network. Experimental results show that the gait recognition accuracy is up to 99.60%, while the memory size of the model is reduced 4.21 times than before optimization.https://www.aimspress.com/article/doi/10.3934/mbe.2023349?viewType=HTMLabnormal gait recognitionconvolutional neural network (cnn)mdbbk structuredouble-channel network
spellingShingle Xiaoguang Liu
Yubo Wu
Meng Chen
Tie Liang
Fei Han
Xiuling Liu
A double-channel multiscale depthwise separable convolutional neural network for abnormal gait recognition
Mathematical Biosciences and Engineering
abnormal gait recognition
convolutional neural network (cnn)
mdb
bk structure
double-channel network
title A double-channel multiscale depthwise separable convolutional neural network for abnormal gait recognition
title_full A double-channel multiscale depthwise separable convolutional neural network for abnormal gait recognition
title_fullStr A double-channel multiscale depthwise separable convolutional neural network for abnormal gait recognition
title_full_unstemmed A double-channel multiscale depthwise separable convolutional neural network for abnormal gait recognition
title_short A double-channel multiscale depthwise separable convolutional neural network for abnormal gait recognition
title_sort double channel multiscale depthwise separable convolutional neural network for abnormal gait recognition
topic abnormal gait recognition
convolutional neural network (cnn)
mdb
bk structure
double-channel network
url https://www.aimspress.com/article/doi/10.3934/mbe.2023349?viewType=HTML
work_keys_str_mv AT xiaoguangliu adoublechannelmultiscaledepthwiseseparableconvolutionalneuralnetworkforabnormalgaitrecognition
AT yubowu adoublechannelmultiscaledepthwiseseparableconvolutionalneuralnetworkforabnormalgaitrecognition
AT mengchen adoublechannelmultiscaledepthwiseseparableconvolutionalneuralnetworkforabnormalgaitrecognition
AT tieliang adoublechannelmultiscaledepthwiseseparableconvolutionalneuralnetworkforabnormalgaitrecognition
AT feihan adoublechannelmultiscaledepthwiseseparableconvolutionalneuralnetworkforabnormalgaitrecognition
AT xiulingliu adoublechannelmultiscaledepthwiseseparableconvolutionalneuralnetworkforabnormalgaitrecognition
AT xiaoguangliu doublechannelmultiscaledepthwiseseparableconvolutionalneuralnetworkforabnormalgaitrecognition
AT yubowu doublechannelmultiscaledepthwiseseparableconvolutionalneuralnetworkforabnormalgaitrecognition
AT mengchen doublechannelmultiscaledepthwiseseparableconvolutionalneuralnetworkforabnormalgaitrecognition
AT tieliang doublechannelmultiscaledepthwiseseparableconvolutionalneuralnetworkforabnormalgaitrecognition
AT feihan doublechannelmultiscaledepthwiseseparableconvolutionalneuralnetworkforabnormalgaitrecognition
AT xiulingliu doublechannelmultiscaledepthwiseseparableconvolutionalneuralnetworkforabnormalgaitrecognition