Energy optimization of a Sulfur–Iodine thermochemical nuclear hydrogen production cycle

The use of nuclear reactors is a large studied possible solution for thermochemical water splitting cycles. Nevertheless, there are several problems that have to be solved. One of them is to increase the efficiency of the cycles. Hence, in this paper, a thermal energy optimization of a Sulfur–Iodine...

Full description

Bibliographic Details
Main Authors: L.C. Juárez-Martínez, G. Espinosa-Paredes, A. Vázquez-Rodríguez, H. Romero-Paredes
Format: Article
Language:English
Published: Elsevier 2021-06-01
Series:Nuclear Engineering and Technology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1738573320309827
Description
Summary:The use of nuclear reactors is a large studied possible solution for thermochemical water splitting cycles. Nevertheless, there are several problems that have to be solved. One of them is to increase the efficiency of the cycles. Hence, in this paper, a thermal energy optimization of a Sulfur–Iodine nuclear hydrogen production cycle was performed by means a heuristic method with the aim of minimizing the energy targets of the heat exchanger network at different minimum temperature differences. With this method, four different heat exchanger networks are proposed. A reduction of the energy requirements for cooling ranges between 58.9-59.8% and 52.6-53.3% heating, compared to the reference design with no heat exchanger network. With this reduction, the thermal efficiency of the cycle increased in about 10% in average compared to the reference efficiency. This improves the use of thermal energy of the cycle.
ISSN:1738-5733