Superabsorbent Sponge and Membrane Prepared by Polyelectrolyte Complexation of Carboxymethyl Cellulose/Hydroxyethyl Cellulose-Al3+

A novel carboxymethyl cellulose/ hydroxyethyl cellulose-Al3+ (CMC/HEC-Al3+) hydrogel was prepared through electrostatic complexing between the anionic polyelectrolyte CMC and cationic cross-linking agent Al3+. The structure and properties of the hydrogel were characterized using FTIR, TGA, and SEM....

Full description

Bibliographic Details
Main Authors: Yang Liu, Yu Chen, Ying Zhao, Zongrui Tong, Shuseng Chen
Format: Article
Language:English
Published: North Carolina State University 2015-08-01
Series:BioResources
Subjects:
Online Access:http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_10_4_6479_Liu_Superabsorbent_Sponge_Membrane_Polyelectrolyte
Description
Summary:A novel carboxymethyl cellulose/ hydroxyethyl cellulose-Al3+ (CMC/HEC-Al3+) hydrogel was prepared through electrostatic complexing between the anionic polyelectrolyte CMC and cationic cross-linking agent Al3+. The structure and properties of the hydrogel were characterized using FTIR, TGA, and SEM. The viscoelasticities of the swollen hydrogel were measured using the rheology test. The results indicated that a porous network structure was formed in the hydrogel. The content of CMC, HEC, and Al3+ can significantly affect its structure and characteristics. A sponge and membrane were prepared from the CMC/HEC-Al3+ hydrogel by freeze-drying and oven drying, respectively. Their swelling behaviors were investigated in water and saline solutions, and quantified with a swelling kinetic simulation. The results indicated that electrostatic effects, physical entanglement, and intra- and intermolecular hydrogen bonds contributed to the cross-linking network structure, with the electrostatic effect acting as the dominant force. In all, both superabsorbent sponge and membrane prepared from CMC/HEC-Al3+ hydrogel showed excellent swelling behavior and could be used in dressing wounds.
ISSN:1930-2126
1930-2126