The 6-girth-thickness of the complete graph
The g-girth-thickness of a graph G is the minimum number of planar subgraphs of girth at least g whose union is G. In this paper, we determine the 6-girth-thickness of the complete graph Kn in almost all cases. And also, we calculate by computer the missing value of
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2020-09-01
|
Series: | AKCE International Journal of Graphs and Combinatorics |
Subjects: | |
Online Access: | http://dx.doi.org/10.1016/j.akcej.2019.05.004 |
_version_ | 1818364013166198784 |
---|---|
author | Héctor Castañeda-López Pablo C. Palomino Andrea B. Ramos-Tort Christian Rubio-Montiel Claudia Silva-Ruiz |
author_facet | Héctor Castañeda-López Pablo C. Palomino Andrea B. Ramos-Tort Christian Rubio-Montiel Claudia Silva-Ruiz |
author_sort | Héctor Castañeda-López |
collection | DOAJ |
description | The g-girth-thickness of a graph G is the minimum number of planar subgraphs of girth at least g whose union is G. In this paper, we determine the 6-girth-thickness of the complete graph Kn in almost all cases. And also, we calculate by computer the missing value of |
first_indexed | 2024-12-13T21:57:37Z |
format | Article |
id | doaj.art-9d23c04ae4a8408eb4a0c904d2c7bfdb |
institution | Directory Open Access Journal |
issn | 0972-8600 2543-3474 |
language | English |
last_indexed | 2024-12-13T21:57:37Z |
publishDate | 2020-09-01 |
publisher | Taylor & Francis Group |
record_format | Article |
series | AKCE International Journal of Graphs and Combinatorics |
spelling | doaj.art-9d23c04ae4a8408eb4a0c904d2c7bfdb2022-12-21T23:30:06ZengTaylor & Francis GroupAKCE International Journal of Graphs and Combinatorics0972-86002543-34742020-09-0117385686110.1016/j.akcej.2019.05.0041739897The 6-girth-thickness of the complete graphHéctor Castañeda-López0Pablo C. Palomino1Andrea B. Ramos-Tort2Christian Rubio-Montiel3Claudia Silva-Ruiz4Universidad Autónoma del Estado de MéxicoUniversidad Nacional Autónoma de MéxicoUniversidad Nacional Autónoma de MéxicoUniversidad Nacional Autónoma de MéxicoUniversidad Nacional Autónoma de MéxicoThe g-girth-thickness of a graph G is the minimum number of planar subgraphs of girth at least g whose union is G. In this paper, we determine the 6-girth-thickness of the complete graph Kn in almost all cases. And also, we calculate by computer the missing value ofhttp://dx.doi.org/10.1016/j.akcej.2019.05.004thicknessplanar decompositioncomplete graphgirth |
spellingShingle | Héctor Castañeda-López Pablo C. Palomino Andrea B. Ramos-Tort Christian Rubio-Montiel Claudia Silva-Ruiz The 6-girth-thickness of the complete graph AKCE International Journal of Graphs and Combinatorics thickness planar decomposition complete graph girth |
title | The 6-girth-thickness of the complete graph |
title_full | The 6-girth-thickness of the complete graph |
title_fullStr | The 6-girth-thickness of the complete graph |
title_full_unstemmed | The 6-girth-thickness of the complete graph |
title_short | The 6-girth-thickness of the complete graph |
title_sort | 6 girth thickness of the complete graph |
topic | thickness planar decomposition complete graph girth |
url | http://dx.doi.org/10.1016/j.akcej.2019.05.004 |
work_keys_str_mv | AT hectorcastanedalopez the6girththicknessofthecompletegraph AT pablocpalomino the6girththicknessofthecompletegraph AT andreabramostort the6girththicknessofthecompletegraph AT christianrubiomontiel the6girththicknessofthecompletegraph AT claudiasilvaruiz the6girththicknessofthecompletegraph AT hectorcastanedalopez 6girththicknessofthecompletegraph AT pablocpalomino 6girththicknessofthecompletegraph AT andreabramostort 6girththicknessofthecompletegraph AT christianrubiomontiel 6girththicknessofthecompletegraph AT claudiasilvaruiz 6girththicknessofthecompletegraph |