Prabhakar Functions of Le Roy Type: Inequalities and Asymptotic Formulae

In this paper, the four-index generalization of the classical Le Roy function is considered on a wider set of parameters and its order and type are given. Letting one of the parameters take non-negative integer values, a family of functions with such a type of index is constructed. The behaviour of...

Full description

Bibliographic Details
Main Author: Jordanka Paneva-Konovska
Format: Article
Language:English
Published: MDPI AG 2023-09-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/17/3768
Description
Summary:In this paper, the four-index generalization of the classical Le Roy function is considered on a wider set of parameters and its order and type are given. Letting one of the parameters take non-negative integer values, a family of functions with such a type of index is constructed. The behaviour of these functions is studied in the complex plane <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">C</mi></semantics></math></inline-formula> and in different domains thereof. First, several inequalities are obtained in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">C</mi></semantics></math></inline-formula>, and then they are modified on its compact subsets as well. Moreover, an asymptotic formula is proved for ‘large’ values of the indices of these functions. Additionally, the multi-index analogue of the abovementioned four-index Le Roy type function is considered and its basic properties are obtained. Finally, several special cases of the two functions under consideration are discussed.
ISSN:2227-7390