Descendants and ascendants in binary trees

There are three classical algorithms to visit all the nodes of a binary tree-preorder, inorder and postorder traversal. From this one gets a natural labelling of the n internal nodes of a binary tree by the numbers 1, 2, ..., n, indicating the sequence in which the nodes are visited. For given...

Full description

Bibliographic Details
Main Authors: Alois Panholzer, Helmut Prodinger
Format: Article
Language:English
Published: Discrete Mathematics & Theoretical Computer Science 1997-12-01
Series:Discrete Mathematics & Theoretical Computer Science
Online Access:http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/view/78
Description
Summary:There are three classical algorithms to visit all the nodes of a binary tree-preorder, inorder and postorder traversal. From this one gets a natural labelling of the n internal nodes of a binary tree by the numbers 1, 2, ..., n, indicating the sequence in which the nodes are visited. For given n (size of the tree) and j (a number between 1 and n), we consider the statistics number of ascendants of node j and number of descendants of node j. By appropriate trivariate generating functions, we are able to find explicit formulae for the expectation and the variance in all instances. The heavy computations that are necessary are facilitated by MAPLE and Zeilberger's algorithm. A similar problem comes fromlabelling the leaves from left to right by 1, 2, ..., n and considering the statistic number of ascendants (=height) of leaf j. For this, Kirschenhofer [1] has computed the average. With our approach, we are also able to get the variance. In the last section, a table with asymptotic equivalents is provided for the reader's convenience.
ISSN:1462-7264
1365-8050