Fractional Calculus for Convex Functions in Interval-Valued Settings and Inequalities

In this paper, we discuss the Riemann–Liouville fractional integral operator for left and right convex interval-valued functions (left and right convex <i>I∙V</i><i>-</i><i>F</i>), as well as various related notions and concepts. First, the authors used the Rieman...

Full description

Bibliographic Details
Main Authors: Muhammad Bilal Khan, Hatim Ghazi Zaini, Savin Treanțǎ, Gustavo Santos-García, Jorge E. Macías-Díaz, Mohamed S. Soliman
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/14/2/341
_version_ 1797476425981231104
author Muhammad Bilal Khan
Hatim Ghazi Zaini
Savin Treanțǎ
Gustavo Santos-García
Jorge E. Macías-Díaz
Mohamed S. Soliman
author_facet Muhammad Bilal Khan
Hatim Ghazi Zaini
Savin Treanțǎ
Gustavo Santos-García
Jorge E. Macías-Díaz
Mohamed S. Soliman
author_sort Muhammad Bilal Khan
collection DOAJ
description In this paper, we discuss the Riemann–Liouville fractional integral operator for left and right convex interval-valued functions (left and right convex <i>I∙V</i><i>-</i><i>F</i>), as well as various related notions and concepts. First, the authors used the Riemann–Liouville fractional integral to prove Hermite–Hadamard type (𝓗–𝓗 type) inequality. Furthermore, 𝓗–𝓗 type inequalities for the product of two left and right convex <i>I∙V</i><i>-</i><i>Fs</i> have been established. Finally, for left and right convex <i>I∙V</i><i>-</i><i>Fs</i>, we found the Riemann–Liouville fractional integral Hermite–Hadamard type inequality (𝓗–𝓗 Fejér type inequality). The findings of this research show that this methodology may be applied directly and is computationally simple and precise.
first_indexed 2024-03-09T20:57:39Z
format Article
id doaj.art-9d6f73b3611843dc94a7a811225e2056
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-09T20:57:39Z
publishDate 2022-02-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-9d6f73b3611843dc94a7a811225e20562023-11-23T22:17:01ZengMDPI AGSymmetry2073-89942022-02-0114234110.3390/sym14020341Fractional Calculus for Convex Functions in Interval-Valued Settings and InequalitiesMuhammad Bilal Khan0Hatim Ghazi Zaini1Savin Treanțǎ2Gustavo Santos-García3Jorge E. Macías-Díaz4Mohamed S. Soliman5Department of Mathematics, COMSATS University Islamabad, Islamabad 44000, PakistanDepartment of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi ArabiaDepartment of Applied Mathematics, University Politehnica of Bucharest, 060042 Bucharest, RomaniaFacultad de Economía y Empresa and Multidisciplinary Institute of Enterprise (IME), University of Salamanca, 37007 Salamanca, SpainDepartamento de Matemáticas y Física, Universidad Autónoma de Aguascalientes, Avenida Universidad 940, Ciudad Universitaria, Aguascalientes 20131, MexicoDepartment of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi ArabiaIn this paper, we discuss the Riemann–Liouville fractional integral operator for left and right convex interval-valued functions (left and right convex <i>I∙V</i><i>-</i><i>F</i>), as well as various related notions and concepts. First, the authors used the Riemann–Liouville fractional integral to prove Hermite–Hadamard type (𝓗–𝓗 type) inequality. Furthermore, 𝓗–𝓗 type inequalities for the product of two left and right convex <i>I∙V</i><i>-</i><i>Fs</i> have been established. Finally, for left and right convex <i>I∙V</i><i>-</i><i>Fs</i>, we found the Riemann–Liouville fractional integral Hermite–Hadamard type inequality (𝓗–𝓗 Fejér type inequality). The findings of this research show that this methodology may be applied directly and is computationally simple and precise.https://www.mdpi.com/2073-8994/14/2/341left and right convex interval-valued functionfractional integral operatorHermite–Hadamard type inequalityHermite–Hadamard Fejér type inequality
spellingShingle Muhammad Bilal Khan
Hatim Ghazi Zaini
Savin Treanțǎ
Gustavo Santos-García
Jorge E. Macías-Díaz
Mohamed S. Soliman
Fractional Calculus for Convex Functions in Interval-Valued Settings and Inequalities
Symmetry
left and right convex interval-valued function
fractional integral operator
Hermite–Hadamard type inequality
Hermite–Hadamard Fejér type inequality
title Fractional Calculus for Convex Functions in Interval-Valued Settings and Inequalities
title_full Fractional Calculus for Convex Functions in Interval-Valued Settings and Inequalities
title_fullStr Fractional Calculus for Convex Functions in Interval-Valued Settings and Inequalities
title_full_unstemmed Fractional Calculus for Convex Functions in Interval-Valued Settings and Inequalities
title_short Fractional Calculus for Convex Functions in Interval-Valued Settings and Inequalities
title_sort fractional calculus for convex functions in interval valued settings and inequalities
topic left and right convex interval-valued function
fractional integral operator
Hermite–Hadamard type inequality
Hermite–Hadamard Fejér type inequality
url https://www.mdpi.com/2073-8994/14/2/341
work_keys_str_mv AT muhammadbilalkhan fractionalcalculusforconvexfunctionsinintervalvaluedsettingsandinequalities
AT hatimghazizaini fractionalcalculusforconvexfunctionsinintervalvaluedsettingsandinequalities
AT savintreanta fractionalcalculusforconvexfunctionsinintervalvaluedsettingsandinequalities
AT gustavosantosgarcia fractionalcalculusforconvexfunctionsinintervalvaluedsettingsandinequalities
AT jorgeemaciasdiaz fractionalcalculusforconvexfunctionsinintervalvaluedsettingsandinequalities
AT mohamedssoliman fractionalcalculusforconvexfunctionsinintervalvaluedsettingsandinequalities